

SECTION 7

The Cellular Stress Response: EMF-DNA Interaction

2012 Supplement

Prof. Martin Blank, PhD Department of Physiology and Cellular Biophysics College of Physicians and Surgeons Columbia University New York, NY USA

> Prepared for the BioInitiative Working Group September 2012

ABSTRACT

The research on stress proteins stimulated by EMF was reviewed by the author in the BioInitiative Report (2007) as well as in the special issue of Pathophysiology (2009) devoted to EMF. This review emphasizes the more recent research on the mechanism of interaction of EMF with DNA. It appears that the DNA molecule is particularly vulnerable to damage by EMF because of the coiled-coil configuration of the compacted molecule in the nucleus. The unusual structure endows it with the self similarity of a fractal antenna and the resulting sensitivity to a wide range of frequencies. The greater reactivity of DNA with EMF, along with a vulnerability to damage, underscores the urgent need to revise EMF exposure standards in order to protect the public. Recent studies have also exploited the properties of stress proteins to devise therapies for limiting oxidative damage and reducing loss of muscle strength associated with aging.

I. INTRODUCTION

The cellular stress response is a protective reaction of individual cells to potentially harmful stimuli in the environment. It is characterized by the synthesis of a class of proteins referred to as stress proteins. The cellular stress response differs from the more familiar responses of entire organisms to stresses that lead to secretion of cortisol and adrenalin and that result in the activation of various systems throughout the body. The cellular stress response, as the name indicates, is a specific response of individual cells, and stress proteins are the chemical agents that also serve as markers.

The cellular stress response was first described as a reaction to elevated temperature (Ritossa, 1962), which accounts for the proteins initially being called heat shock proteins. Several physical and chemical environmental influences have since been found to evoke the response, and in 1994, Goodman and Blank (1994) were the first to show that the response was stimulated by EMF. In fact, the cells were far more sensitive to EMF than to thermal stimuli, the threshold energy of the EMF stimulus being more than one billion times weaker than an effective thermal stimulus (Blank, Goodman, 1994).

The 'heat shock' response, i.e., hsp synthesis, is activated by a variety of potentially harmful stresses, including physical stimuli like pH and osmotic pressure changes, as well as chemicals such as ethanol and toxic metal ions like Cd²⁺. The ability of EMF in the power frequency (extremely low frequency, ELF) range (Goodman, Blank, 1998) to evoke this response was followed by reports of similar effects due to radio frequency (RF) fields (de Pomerai et al. 2003) and amplitude modulated RF fields (Czyz et al, 2004).

The finding that EMF evoked the cellular stress response had obvious and important biological implications:

- Because the cellular stress response is a reaction to potentially harmful stimuli in the environment, the cells were asserting that *EMF is potentially harmful* to cells.
- Because EMF stimulated protein synthesis, it meant that *EMF causes the two strands of DNA to come apart* for the protein code to be read and for synthesis to proceed.
- Since *EMF can interact with DNA*, it can cause *errors during replication*, as well as during protein synthesis, and higher energy EMF could be expected to cause *DNA strand breaks*, as has been observed (Lai and Singh, 1995).
- The incremental increase of DNA strand breaks with increases in field strength indicates a *dose-response*, evidence in support of EMF as the responsible agent.

II. CELLULAR STRESS PROTEINS ARE A NEW CLASS OF PROTEINS

Proteins are important components of cells and make up about 50% of the dry weight of most cells. The many different proteins are classified according to their functions, and stress proteins are now recognized as a new class of proteins with functions related to cell protection. Stress proteins join such well-known categories as contractile proteins (e.g. actin, myosin), catalytic proteins or enzymes (e.g. pepsin, amylase), transport proteins

(e.g. ATPases for ions across membranes, hemoglobins for blood gases, cytochromes for electrons), etc. Stress proteins were originally described as being synthesized in response to external stimuli and that is currently the area of greatest interest. However, they are also present constitutively.

Cellular stress proteins are synthesized when cells come in contact with stimuli that cause damage to macromolecules (Kultz, 2005), and the stress proteins aid in the repair and transport of these molecules. Because the first stimulus identified was an increase in temperature, the proteins were called 'heat shock' proteins and designated using the original terminology that starts with 'hsp' (for 'heat shock' protein) and a number equal to the molecular weight in kilodaltons.

The transition from heat shock protein to stress protein should alert (perhaps even alarm) the government agencies responsible for setting EMF safety standards. The thermal stimuli that evoked synthesis of protective proteins were believed to be dangerous for cells, but now we see that non-thermal EMF stimuli cause the same protective reactions in cells. The heat shock response and the EMF stress response both relate to the threshold for biological damage, and we should realize that EMF damage is caused by non-thermal stimuli. Compared to the energy needed to stimulate heat shock, EMF requires but a small fraction of the thermal energy needed to produce the same response (Blank et al., 1992).

The government agencies that assess safety of EMF exposure assume that danger is associated with an increase in temperature, i.e., a thermal criterion. It is clear from the responses of cells that the safety of EMF exposure, as indicated by the synthesis of protective stress proteins, is unrelated to the temperature increase. The cells are very sensitive to EMF, and the protective biological response to EMF occurs long before there is a significant change in temperature. It should be obvious that EMF safety standards are based on false assumptions and must be revised to reflect the scientific evidence. Non-thermal EMF stimuli are potentially harmful.

III. PROTEIN SYNTHESIS

The stress response, like all protein synthesis, indicates that all of the different physical and chemical stimuli that can initiate this response cause the two strands of DNA to come apart for the amino acid code for protein synthesis code to be read. Therefore, the observed stress protein synthesis is evidence that EMF has interacted with the DNA to start this process. The research showing that EMF in both the ELF and RF frequency ranges can also cause DNA strand breaks (Lai, Singh, 1995; 1996; Reflex Report 1994), suggests that the two phenomena are due to the same interaction mechanism, and that there is greater molecular damage with greater EMF energy.

Many research papers and some reviews have been published since the cellular stress response was reported to be stimulated by EMF. In addition to earlier reviews on EMF stimulation of the cellular stress response in the ELF (Goodman, Blank, 1998) and RF (Cotgreave, 2005) ranges, the subject was reviewed in Pathophysiology (Blank, 2009). Also, Calderwood (2007) has edited the volume on cell stress proteins in volume 7 of the series Protein Reviews. A recent (ICEMS, 2010) review on EMF and Bio-Effects includes many papers focused on a variety of possible EMF interaction mechanisms, but does not review the stress response, the stimulation of DNA or biosynthesis.

Section 7 of the Bioinitiative Report summarized both ELF and RF studies, mainly at frequencies 50 Hz, 60 Hz, 900MHz and 1.8 GHz. The citations in that review were not exhaustive, but the different frequencies and many different cells indicated the diversity of results on stimulation of DNA and stress protein synthesis. The many different types of cells that respond to EMF, both *in vivo* and *in vitro*, include epithelial, endothelial and epidermal cells, cardiac muscle cells, fibroblasts, yeast, *E. coli*, developing chick eggs, and dipteran cells.

It is clear that the stress response does not occur in reaction to EMF in all types of cells, and that tissue cultured cells (as opposed to natural cells) are less likely to show an effect of EMF, probably because immortalized cells have been changed significantly to enable them to live indefinitely in unnatural laboratory conditions. Even the same cell line from two different suppliers can respond differently. Jin et al. (1997) showed that HL60 cells from one supplier reacted to EMF while identically labeled cells from another supplier did not respond. Some cancer cells (e.g., MCF7 breast cancer cells) have responded to EMF (Liburdy et al., 1993; Lin et al., 1998), and Czyz et al. (2004) found that p53deficient embryonic stem cells showed an increased EMF response, but the wild type did not. Ivanscits et al., 2005) found no genotoxic effects (i.e., DNA damage) in lymphocytes, monocytes and skeletal muscle cells, but did find effects with fibroblasts, melanocytes and rat granulosa cells. Lantow et al. (2006) and Simko et al. (2006) found that blood elements, such as lymphocytes and monocytes did not respond. Obviously, the cellular stress response is widespread but not universal.

IV. MECHANISM OF PROTEIN SYNTHESIS BY EMF

The stress response has provided an opportunity to investigate EMF interaction with DNA, and in particular, how this results in stimulating DNA to start the synthesis of proteins. Because the DNA sequence is known for hsp70, it was possible to study the effects of changes in the DNA sequence on protein synthesis. As a result of these experiments, it was possible to identify two distinct regions in the promoter region of the HSP 70 gene - an EMF sensitive region that was not sensitive to increased temperature, as well as a region sensitive only to temperature. The EMF sensitive domain contains number of nCTCTn myc-binding sites relative to the transcription initiation site and upstream of the temperature sensitive binding sites (Lin et al. 1999; 2001). These electromagnetic response elements (EMREs) are also found on the c-*myc* promoter which also reacts to EMF.

The EMF sensitivity of the DNA sequences, nCTCTn, was demonstrated by transfecting these sequences into CAT and Luciferase reporter genes and stimulating those genes (with EMF) to synthesize CAT and luciferase, respectively (Lin et al., 1999; 2001). Thus, the HSP70 promoter contains different DNA regions that are specifically sensitive to thermal and non-thermal stressors. This biological mechanism is obviously based on direct interaction with specific segments of DNA, and there is reason to believe that EMF can interact similarly with other segments of DNA. In our experiments, induction of

increased levels of hsp70 by EMF is rapid and occurs at extremely low levels of energy input, 14 orders of magnitude lower than with a thermal stimulus (Blank et al. 1994).

V. EMF INTERACTION WITH SIGNALING PATHWAYS

EMF penetrate cells unattenuated and so can interact directly with the DNA in the cell nucleus, as well as with other cell constituents. The above-cited experiments demonstrating the ability of electromagnetic response elements (EMREs) to interact with EMF, after being transferred to another DNA chain, is further support for direct EMF-DNA interaction as the most likely mechanism for EMF initiation of the cellular stress response.

In contrast to EMF, most biological agents are impeded by membranes and require special mechanisms to gain access to the cell interior. Friedman et al, (2007) have demonstrated that, in those situations, the initial step in transmitting extracellular information from the plasma membrane to the nucleus of the cell occurs when NADH oxidase rapidly generates reactive oxygen species (ROS). These ROS stimulate matrix metalloproteinases that allow them to cleave and release heparin binding epidermal growth factor. This secreted factor activates the epidermal growth receptor, which in turn activates the extracellular signal regulated kinase 1\2 (ERK) cascade. The ERK cascade is one of the four mitogen-activated protein kinase (MAPK) signaling cascades that regulate transcriptional activity in response to extracellular stimuli.

Stress protein synthesis can occur by direct interaction of EMF with DNA, as well as by membrane mediated stimulation via chemical signaling. While both mechanisms are possible, it is of interest to note that the body responds directly to physical inputs when there is a need for a rapid response. The body cannot rely upon slowly responding pathways for the synthesis of a relatively large amount of urgently needed protein molecules. The signal pathways function primarily as a mechanism for maintaining homeostasis by minimizing change and responding slowly to stimuli.

VI. INSIGHTS FROM MUSCLE PROTEIN SYNTHESIS

EMF stimulated protein synthesis may appear to be an unnatural mechanism, but it is essentially the same as the natural process in striated muscle. The only difference is that the electrons in DNA are driven by EMF, while in striated muscle, they are driven by the changes in electric (membrane) potential that cause contraction. Striated muscle is a tissue that requires steady protein synthesis to ensure proper function. Protein synthesis is initiated by the same electric currents that stimulate the muscle contractions. Body builders know that one must stimulate muscle contraction in order to increase muscle mass, and biologists have shown that the electric currents that flow across the muscle membranes during contraction pass through the DNA in the muscle nuclei and stimulate protein synthesis.

Muscle nuclei are not spread evenly throughout a muscle fiber, but are located near the muscle membranes that carry the currents. This means that the DNA in the nuclei can be stimulated every time the muscle is stimulated. The estimated magnitude of electric field along the muscle nuclei, ~10V/m, provides a large safety margin in muscle, since fields as low as 3mV/m were found to stimulate biosynthesis in HL60 cells (Blank et al, 1992).

Studies showing effects of EMF on electron transfer reactions in solution suggest that ionic (electric) currents affect electron movements within DNA in much the same way (Blank, 1995). Both electric and EMF (AC magnetic fields) stimulate protein synthesis in HL60 cells and have similar effects on electron transfer in the Na,K-ATPase (Blank and Soo, 2001a; 2001b). This suggests that interaction with DNA, of both electric fields and EMF, initiate stress protein synthesis by a similar mechanism.

Studies on muscle protein synthesis also suggest the possibility of a

8

frequency code that controls the particular segment of DNA that is activated. Studies have shown that different proteins can be synthesized by changing the frequency of the action potentials that stimulate the process. These experiments were possible because 'fast' and 'slow' muscles contract at different rates because they are composed of different proteins. For this reason it was possible to stimulate muscles at different rates and to study changes in the proteins as a result of changing the frequency of the action potentials (Pette, Vrbova, 1992). The review by Blank (1995) includes many additional experiments that show the importance of the frequency in controlling the segment of the muscle DNA that is affected by the current and translated into protein.

Studies of effects of EMF on well characterized electron transfer reactions, involving cytochrome oxidase, ATP hydrolysis by Na,K-ATPase, and the Belousov–Zhabotinski (BZ) redox reaction, have shown that:

- EMF can accelerate electron transfer rates
- EMF acts as a force that competes with the chemical forces driving a reaction. This means that the effect of EMF varies inversely with the intrinsic reaction rate, and that EMF effects are only seen when intrinsic rates are low. (*N.B. EMF has a greater effect when the system is in a rundown state.*)
- Experimentally determined thresholds are low ($\sim 0.5 \mu$ T).
- Effects vary with frequency, with different optima for the reactions studied: The two enzymes showed broad frequency optima close to the reaction turnover numbers for Na,K-ATPase (60 Hz) and cytochrome oxidase (800 Hz), suggesting that EMF interacted optimally when in synchrony with the molecular kinetics. EMF interactions with DNA in both ELF and RF ranges and do not appear to involve electron transfer reactions with well-defined kinetics.

The effects of EMF on electron transfer reactions were studied in the ELF frequency range, and one would expect differences in the RF range. However, the situation is more

complicated. The effects of EMF on electrons in chemical reactions were detected in the Na,K-ATPase when electric or magnetic fields, each accelerated the reaction only when the enzyme was relatively inactive, i.e., the chemical driving forces were weak. These experiments enabled an estimate of the electron velocity as approximately 10^3 m/s (Blank and Soo, 2001a; 2001b), a velocity similar to that of electrons in DNA. An electron moving at a velocity of 10^3 m/s crosses the enzyme ($\sim 10^{-8}$ m) before the ELF field has had a chance to change. This means that a low frequency effect on fast moving electrons in DNA or in enzymes should be viewed as effectively due to a repeated DC pulse. In the RF range, the pulse train is longer.

VII. DNA IS A FRACTAL ANTENNA

Human DNA is about 2 m long, and the molecule is greatly compacted so that it fits into the nuclei of cells that are microns in diameter.

DNA has a unique double helical structure where two strands of DNA are bound together by hydrogen bonds between pairs of nucleotide bases (one on each strand) and they form a long twisted ribbon with delocalized π electrons that form continuous planar clouds on both surfaces of the ribbon. The result is a structure with two continuous paths that can conduct an electron current along the DNA.

Many studies, initially from the laboratory of Barton at Cal Tech (Hall et al, 1996), have shown that DNA does indeed conduct electrons. As would be expected, the rate of conduction can be influenced by the detailed structure of DNA. Changes, such as hairpin turns and mismatched bases, can lead to the disruption of the ordered double helical structure and anomalies in the rate of electron flow (Arkin et al, 1996; Hall et al, 1997; Lewis et al, 1997; Kelley et al, 1999; Giese, 2002). Electron flow can lead to local charging as well as oxidative damage.

Variations in the rate of electron flow can lead to the accumulation of charge at bottlenecks. The temporary buildup of charge at a site results in strong repulsive forces that can cause a disruption of H-bonds. A net charge can even disrupt the structure of a complex molecule, such as occurs when the four protein chains of hemoglobin disaggregate in response to a gradual buildup of charge in the hemoglobin tetramer (Blank, 1984; Blank and Soo, 1998). For similar reasons, one would expect disaggregating forces at the DNA site where charge builds up. This would be expected to occur more easily in a compact structure such as DNA in the nucleus.

The tightly coiled DNA in the nucleus uses fractal patterns in order to occupy space efficiently. A fractal is a shape that displays *self-similarity*, where each part of the shape resembles the entire shape. Thus, the double helix is wound into a coil and that coil is wound into a larger coil, and so on. DNA in a cell nucleus is a coiled-coil many times over.

Since the DNA molecule in the nucleus conducts electricity and is organized in a selfsimilar pattern, it has the two key characteristics of *fractal antennas* when interacting with EMF (Blank, Goodman 2011). Fractal design is desirable for an antenna because it minimizes the overall size, while reacting to a wide range of electromagnetic frequencies. However, these characteristics are not desirable in DNA, because of the many frequencies in the environment that can and do react with DNA. The almost continuous cloud of delocalized electrons along both faces of the 'ribbon' formed by the base pairs provides a conducting path for responding to EMF and makes it more vulnerable to damage. The chemical changes that result from electron transfer reactions, are associated with molecular damage in DNA.

VIII. DNA DAMAGE AND CANCER

Stress proteins are essential for cell protection. They help defend cells against damaging forces like increases in temperature and reductions in oxygen supply that could be life-threatening. Similarly, the body generates stress proteins to strengthen cellular resistance to the effects of EM radiation. However, stress protein synthesis is really only an emergency measure that is designed to be effective in the short term. The response to repeated stimuli diminishes with repeated exposure and this could be dangerous.

Thermotolerance, the ability to tolerate higher temperatures as a result of repeated exposures to high temperature, was originally demonstrated at the molecular level in connection with heat shock. Repeated exposure to increased temperature resulted in a decreased heat shock response. A similar mechanism applies when the cellular stress response is stimulated by EMF, since repeated EMF stimuli result in lower production of stress proteins. This could very well be a mechanism by which repeated exposure to EMF can result in less protection and more damage to molecules like DNA. The lower protection predisposes exposed individuals to an increased risk of mutation and initiation of cancer.

DiCarlo and Litovitz (2008) at Catholic University in Washington, D.C. demonstrated the development of EMF tolerance in an experiment performed on chicken embryos. In those eggs exposed to ELF-radiation of 8 μ T for 30 or 60 minutes at a time, twice a day for four days, production of hsp70 in response to oxygen deprivation declined. The same response was noted in those eggs exposed to RF radiation of 3.5 μ W/cm² for 30 or 60 minutes, once a day, for four days. The researchers noted that these eggs produced 27% less hsp70 following these exposures, and had correspondingly reduced ability to fend off cell damage (reduced *cytoprotection*). Similar experiments have been carried out with short, repeated exposures (in contrast to extended exposures). There too, the rate of stress protein synthesis is reduced with each repetition. The reduction in stress protein synthesis as a result of continuous exposure to EMF would predispose an individual to the accumulation of DNA damage and the development of cancer.

Cancers are believed to be the long term result of the errors in DNA that occur during the normal functioning of cells. Living cells are continuously growing (making protein) and dividing (making DNA), and errors in synthesis occur. The error rate is a very small but finite, so the vast majority of errors is repaired, but not all. When the error rate is too high, the cell activates apoptosis and destroys itself . However, the small number of errors that is retained accumulates over time as mutations, some of which can affect function. It is particularly bad when mutation inactivates a tumor suppressor gene or a

DNA repair gene and enables creation of an oncogene, since this accelerates the development of a cancer.

Although damage can occur during protein synthesis and cell division, as well as upon exposure to oxidizing chemicals, the probability of developing cancer is increased as a result of damage to DNA structure caused by exposure to EMF (Verschaeve, 2008). EMF induced oxidative damage to DNA has even been reported on exposure to high ELF fields (Yokus et al, 2008).

IX. STRESS RESPONSE: BIOLOGICAL GUIDE TO SAFETY

The cellular stress response is the way the body tells us that it has come in contact with a potentially harmful stimulus. Since cells react to relatively low levels of EMF, both ELF and RF, one would think that the low biological thresholds for a protective reaction to harmful stimuli would provide critical guidance for the authorities seeking to establish meaningful safety standards. By ignoring the information from the cellular stress response, the authorities appear to be saying that they are better judges of what is harmful to cells than the cells themselves.

Research on the cellular stress response has drawn attention to the inadequacy of EMF safety standards. The synthesis of stress proteins at EMF levels that are currently considered safe indicates that ambient exposure levels can influence the molecular processes involved in protein synthesis needed to provide new molecules and replace damaged molecules. The ability of EMF to interfere with normal function and damage the protein and DNA molecules that are being synthesized is definitely a reason to consider this effect for guidance regarding its health implications. The system of safety standards is not at all protective because processes stimulated at non-thermal levels have been overlooked. The standards must be revised.

The authorities have been misguided in assuming that only thermal stimuli could affect chemical bonds and that non-thermal stimuli cannot cause chemical changes. Nonthermal biological mechanisms activated by EMF have been known for some time, and some experiments have even been aimed specifically at demonstrating unusual changes in biological systems due to non-thermal EMF stimuli. Bohr and Bohr (2000) showed that both a reaction and its reverse, the denaturation and renaturation of β -lactoglobulin, are accelerated by microwave EMF, and de Pomerai et al (2003) showed that microwave radiation causes protein aggregation in the absence of bulk heating. A clear separation of thermal and non-thermal mechanisms in biology was shown by Mashevich et al (2002) in experiments where chromosomal damage in lymphocytes that had been observed under RF was not seen when the cells were exposed to elevated temperatures. The neglect of non-thermal mechanisms by regulators is based on their ignorance of reactions in biological systems. By greatly underestimating the risk of EMF exposure, they continue to endanger the public.

The cellular stress response is activated by a mechanism that involves interaction of EMF with the DNA molecule. This reaction of DNA, and/or the stress proteins that are synthesized, could be used to develop new EMF safety standards (Blank and Goodman, 2012). A biologically-based measure of EMF radiation could replace the misguided energy-based "specific absorption rate" (SAR). (It should be noted that SAR is the safety standard in the radiofrequency (RF) range, but it fails as a standard for predicting cancer risk in the ELF range.) A standard based on stress proteins would have several advantages compared to SAR:

- it is based on a protective cellular mechanism that is stimulated by a variety of potentially harmful environmental agents
- it is stimulated by a wide range of frequencies in the EM spectrum so there would be no need for different standards in different frequency ranges.

Cancers are believed to arise from mutations in DNA, and changes in DNA induced by interaction with EMF could be a better measure of the biologically effective dose. It may be possible to measure the changes by transcriptional alterations and/or translational changes in specific proteins. A biologically-based standard related to stimulation of DNA

could apply over a much wider range of the electromagnetic spectrum and include ionizing radiation.

X. STRESS RESPONSE: GUIDE TO NEW THERAPIES

Since activation of the cellular stress response by EMF was shown to be a protective mechanism, it was only a matter of time before the response would be studied as a potential therapeutic agent. Thermal activation of the stress response has already been shown to be effective in cardiac bypass surgery (Currie et al., 1993; Udelsman et al., 1993; Nitta et al., 1994). Stress protein activation can apparently minimize the oxidative damage of ischemia (low oxygen level in a tissue) reperfusion that occurs when the blood supply is reconnected to the heart after surgery. However, the temperature control required for thermal activation is cumbersome and the technique is not easily applied compared to EMF. A study of non-invasive EMF induction of hsp70, prior to cardiac bypass surgery, has shown that myocardial function can be preserved, and at the same time decrease ischemic injury (George et al, 2008).

EMF activation of stress protein synthesis has a clear advantage over thermal activation. The biological response is not related to the EMF energy, so protective biological responses should occur far below thermal levels. 60 Hz fields were shown to induce elevated levels of hsp70 protein in the absence of elevated temperature (Goodman et al., 1994; Goodman and Blank, 1998; Han et al., 1998; Lin et al., 1998, 1999, 2001; Carmody et al., 2000) in cells including cultured rodent cardiomyocytes (Goodman and Blank, 2002). Also, Di Carlo et al. (1999) and Shallom et al. (2002) confirmed that cardiomyocytes were protected from anoxic damage in EMF exposed chick embryos.

Another potential therapeutic application has come from a study of the stress protein hsp10 in relation to striated muscle function. Kayani et al (2010) at the University of Liverpool found that this stress protein can prevent the age-related deterioration of muscle strength in skeletal muscle of transgenic mice. Hsp10 is often linked with hsp60 in supporting mitochondrial function. In cardiac myocytes this combination protects mitochondrial function as well as preventing cell deaths induced by ischemia-reperfusion.

These results suggest that mitochondrial hsp10 and hsp60 in combination or individually play an important role in maintaining mitochondrial integrity and ability to generate ATP, which are crucial for survival of cardiac myocytes during ischemia/reperfusion.

Research on therapeutic effects using stress proteins is obviously just beginning and we can expect other applications where EMF is used to generate this group of therapeutic agents essentially instantaneously and in situ.

XI. THE ENVIRONMENTAL EMF ISSUE AND CONCLUSIONS

Research has shown that the EMF-activated cellular stress response:

- is an effective protective mechanism for cells exposed to a wide range of EMF frequencies
- thresholds are very low (safety standards must be reduced to limit biological responses)
- mechanism involves direct interaction of EMF with the DNA molecule (claims that there are no known mechanisms of interaction are patently false)
- the coiled-coil structure of DNA in the nucleus makes the molecule react like a fractal antenna to a wide range of frequencies (there is a need for stricter EMF safety standards)
- biologically-based EMF safety standards could be developed from the research on the stress response.

REFERENCES

Arkin MR, Stemp EDA, Holmlin RE, Barton JK, Hoermann A, Olson EJC, Barbara PF. 1996. Rates of DNA-mediated electron transfer between metallointercalators. Science 273: 475.

BioInitiative Working Group, Cindy Sage, David O. Carpenter, Editors. 2007. BioInitiative Report: A rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF) at www.bioinitiative.org.

Blank M. 1984. Molecular association and the viscosity of hemoglobin solutions. J Theoretical Biology108:55-64.

Blank M. 1995. Electric stimulation of protein synthesis in muscle. Advances in Chemistry 250: 143-153

Blank M. 2005. A proposed explanation for effects of electric and magnetic fields on the Na,K-ATPase in terms of interactions with electrons. Bioelectromagnetics 26(8::591-597.

Blank M. 2008. Protein and DNA reactions stimulated by electromagnetic fields. Electromagnetic Biology and Medicine 27: 3-23.

Blank M. 2009. Editor, Special issue on Electromagnetic Fields. Pathophysiology 16:67-250. (August 2009. Published on line, doi 10.1016/j.pathophys.2009.10.02.002

Blank M, Goodman R. 2001. Electromagnetic initiation of transcription at specific DNA sites. Journal of Cellular Biochemistry 81: 689-692.

Blank M, Goodman R. 2009. Electromagnetic Fields Stress Living Cells. Pathophysiology, published online, doi 10.1016/j.pathophys.2009. 10.01.006

Blank M, Goodman R. 2011. DNA is a fractal antenna in electromagnetic fields (EMF.. Int. J. Radiation Biol 87: 409-15.

Blank M, Goodman R. 2012. Electromagnetic fields and health: DNA-based dosimetry. Electromagnetic Biology and Medicine. in press. DOI:10.3109/15368378.2011.624662

Blank M, Khorkova O, Goodman R. 1994. Changes in polypeptide distribution stimulated by different levels of EM and thermal stress. Bioelectrochemistry and Bioenergetics 33:109-114.

Blank M, Soo L. 1987. Surface free energy as the potential in oligomeric equilibria: prediction of hemoglobin disaggregation constant. Bioelectrochemistry and Bioenergetics 17:349-360.

Blank M, Soo L. 2001a. Electromagnetic acceleration of electron transfer reactions. Journal of Cellular Biochemistry 81: 278-283.

Blank M, Soo L. 2001b. Optimal frequencies in magnetic field acceleration of cytochrome oxidase and Na,K-ATPase reactions. Bioelectrochemistry 53: 171-174.

Blank M, Soo L. 2003. Electromagnetic acceleration of Belousov-Zhabotinski reaction. Bioelectrochemistry 61: 93-97.

Blank M, Soo L, Lin H, Henderson AS, Goodman R. 1992. Changes in transcription in HL-60 cells following exposure to AC electric fields. Bioelectrochemisty and Bioenergetics 28: 301-309.

Bohr H, Bohr J. 2000. Microwave enhanced kinetics observed in ORD studies of protein. Bioelectromagnetics. 21:68-72.

Calderwood SK. 2007. Editor. Cell stress proteins. In series of Protein Reviews, Vol. 7, 460pp.

Carmody S, Wu XL, Lin H, Blank M, Skopicki H, Goodman R. 2000. Cytoprotection by electromagnetic field-induced hsp70: A model for clinical application. Journal of Cellular Biochemistry 79:453-459.

Chen ES, Chen ECM. 1998. A proposed model for electron conduction in DNA based upon pairwise anion π stacking: electron affinities and ionization potentials of the hydrogen bonded base pairs. Bioelectrochemistry and Bioenergetics 46 (1.:15–19.

Cotgreave IA. 2005. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat. shocking? Archives of Biochemistry and Biophysics 435: 227-240.

Currie RW, Tanguay R, Klingma JG. 1993. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87:863–871.

Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Schuderer I, Kuster N, Wobus AM. 2004. High frequency electromagnetic fields (GSM signals. affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 25: 296-307.

de Pomerai DI, Smith B, Dawe A, North K, Smith T, Archer DB, Duce IR, Jones D, Candido EP (2003. Microwave radiation can alter protein conformation without bulk heating. FEBS Letters 22:543(1-3):93-97.

DiCarlo AL, Farrell JM, Litovitz TA. 1998. A simple experiment to study electromagnetic field effects: protection induced by short-term exposures to 60 Hz magnetic fields. Bioelectromagnetics 19:498-500.

DiCarlo AL, Farrell JM, Litovitz TA. 1999. Myocardial protection conferred by electromagnetic fields. Circulation 99: 813 816.

Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al (69 authors). 2010. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999-1005. doi:10.1038/nature08989.

Focke F, Schuermann D, Kuster N, Schar P. 2010. DNA Fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure, Mutation Research / Fundamental and Molecular Mechanisms of Mutagenesis, doi:10.1016/j.mrfmmm.2009.10.012

Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. 2007. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochemistry Journal 405: 559-568.

George I, Geddis MS, Lill Z, Lin H, Gomez T, Blank M, Oz MC, Goodman R. 2008. Myocardial function improved by electromagnetic field induction of stress protein hsp70. Journal of Cellular Physiology. 216:816-823. DOI: 10.1002/jcp.21461.

Giese B. 2002. Electron transfer in DNA. Current Opinion in Chemical Biology 6: 612–618.

Goodman R, Blank M, Lin H, Khorkova O, Soo L, Weisbrot D, Henderson AS. 1994. Increased levels of hsp70 transcripts are induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochemistry and Bioenergetics 33: 115-120.

Goodman R, Blank M. 1998. Magnetic field induces expression of hsp70. Cell Stress and Chaperones 3:79-88.

Goodman R, Lin-Ye A, Matthew S. Geddis MS, Susan E. Hodge SE, et al. 2009. Electromagnetic fields activate the ERK cascade, increase hsp70 protein levels and promote regeneration in Planaria. International Journal of Radiation Biology 85(10): 851–859.

Hall DB, Holmlin RE, Barton JK. 1996. Oxidative DNA damage through long range electron transfer. Nature 382, 731

Hall DB, Barton JK. 1997. Sensitivity of DNA-mediated electron transfer to the intervening pi-stack: A probe for the integrity of the DNA base stack. Journal of the American Chemical Society 119, 5045.

Han L, Lin H, Head M, Jin M, Blank M, Goodman R. 1998. Application of magnetic field-induced Hsp70 for pre-surgical cytoprotection. Journal of Cellular Biochemistry 71:577-583.

The International Commission for Electromagnetic Safety (ICEMS). 2010. Giuliani L, Soffritti M, eds. Ramazzini Institute, European Journal of Oncology, Library, Vol. 5. Available at: http://www.icems.eu/papers/ramazzini_library5_part1.pdf

Ivancsits S, Pilger A, Diem F, Jahn O, Rudiger H. 2005. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutation Research 583:184-188.

Jin M, Lin H, Han L, Opler M, Maurer S, Blank M, Goodman R. 1997. Biological and technical variables in myc expression in HL60 cells exposed to 60 Hz electromagnetic fields. Bioelectrochemistry and Bioenergetics 44: 111-120.

Kayani AC, Close GL, Dillmann WH, Mestril R, Jackson MJ, McArdle A. 2010. Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle Cross-Sectional Area. American Journal of Physiology - Regulatory, Integrative, and Comparative Physiology 299(1):R268-76.

Kelley SO, Jackson NM, Hill MG, Barton JK. 1999. Long-range electron transfer through DNA Films. Angewandte Chemie International Edition 38: 941–945.

Kultz D. 2005. Molecular and evolutionary basis of the cellular stress response. Annual Reviews of Physiology 67: 225-257.

Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Simko M. 2006. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiation Environmental Biophysics 45: 55-62.

Lai H, Singh NP. 1995. Acute low-intensity microwave exposure increases DNA singlestrand breaks in rat brain cells. Bioelectromagnetics 16: 207-210

Lai H, Singh NP. 1996. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. International Journal of Radiation Biology 69(4):513-521

Lewis FD, Wu T, Zhang Y, Letsinger RL, Scott R. Greenfield SR, Wasielewski MR. 1997. Distance-dependent electron transfer in DNA hairpins. Science 277: 673-676. DOI: 10.1126/science.277.5326.673 Available at: http://www.sciencemag.org/content/277/5326/673.short - fn-1

Liburdy RP, Sloma TR, Sokolic R, Yaswen P. 1993. ELF magnetic fields, breast cancer, and melatonin: 60Hz fields block melatonin's oncostatic action on ER+ breast cancer cell proliferation. Journal of Pineal Research 14: 89-97.

Lin H, Head M, Blank M, Han L, Jin M, Goodman R. 1998. Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. Journal of Cellular Biochemistry 69: 181-188.

Lin H, Blank M, Rossol-Haseroth K, Goodman R. 1999. A magnetic field responsive domain in the human HSP70 promoter. Journal of Cellular Biochemistry 75: 170-176.

Lin H, Blank M, Rossol-Haseroth K, Goodman R. 2001. Regulating genes with electromagnetic response elements. Journal of Cellular Biochemistry 81:143-148.

Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH. 2001. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787-1792. doi: 10.1161/01.CIR.103.13.1787

Mashevich M, Folkman D, Kesar A, Barbul A, Korenstein R, Jerby E, Avivi L. 2003. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24: 82-90.

Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S. 1994. Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. American Journal of Phyisology 267:H1795–H1803.

Pathophysiology. 2009. M Blank, editor of Special August. issue on EMF. Published on line, doi 10.1016/j.pathophys.2009. 10.02.002

Pette D, Vrbova G. 1992. Adaptation of mammalian skeletal muscle fibers to chronicelectrical stimulation. Reviews of Physiology, Biochemistry and Pharmacology 120: 115-202.

REFLEX Project Report. 2004. Available at: http://www.electric-fields.bris.ac.uk/Reflex%20report.pdf

Ritossa FM. 1962. A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia Basel 18:571-573.

Shallom JM, DiCarlo AL, Ko D, Penafiel LM, Nakai A. 2002. Microwave exposure induces hsp70 and confers protection against hypoxia in chick embryos. Journal of Celllar Biochemistry 86:490-496.

Simko M, Hartwig M, Lantow M, Lupke M, Mattsson MO, Rahman Q, Rollwitz J. 2006. Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicology Letters 161:73- 82. Udelsman R, Blake MJ, Stagg CA, Li D-G, Putney D, Holbrook NJ. 1993. Vascular heat shock protein expression in response to stress. Journal of Clinical Investigation 91:465–473.

Verschaeve L. 2008. Genetic damage in subjects exposed to radiofrequency radiation, Mutation Research-Reviews in Mutation Research doi:10.1016/j.mrrev.2008.11.002

Yokus B, Akdag MZ, Dasdag S, Cakir DU, Kizil M. 2008. Extremely low frequency magnetic fields cause oxidative DNA damage in rats. International Journal of Radiation Biology 84(10): 789–795.