Static Field/ELF-EMF Free Radical (Oxidative Damage) Studies

Of 263 total studies: \((E = 235 \text{(89\%)}); \text{NE} = 28 \text{(11\%)} \)

(E = reported effect; NE = reported no significant effect)

(VT = in vitro; VO = in vivo; HU = human study; CE = long-term/repeated exposure; AE = acute exposure; LI = low intensity; IFR = increase free radical; DFR = decrease free radical; IOD = increase oxidative damages; DOD = decrease oxidative damages; IAO = increase antioxidant activity; DAO = decrease antioxidant activity; AO = effect of antioxidant/free radical scavenger; IX = interaction with other factor; MC = mechanism)

Ahematological and morphological investigation was made of the effects of pulsed magnetic field (PMF) stimulus on oxidized erythrocyte membrane using the smear method and spectroscopic measurement. Tert-butyl hydroperoxide (tBHP) was used for oxidative stress, and verapamil was used as reduction agent on red blood cells (RBCs). Our PMF stimulator system was designed to generate a maximum intensity of 0.27 T at a transition time of 0.102 ms. The morphology of oxidized RBCs, and oxidative stressed RBCs after treatment with a reducing agent were observed before and after PMF. Light absorbance of hemoglobin (Hb) was measured in the membrane as well as plasma, through hemolysis of RBCs. Absorbance for a sample exposed to PMF before the oxidation treatment was lower than that for a sample not exposed to PMF in the plasma. This means that PMF plays a role in preventing hemolysis of erythrocyte membrane from oxidative stress. Our results were confirmed using an osmotic fragility test. Hemolysis in the case of PMF treatment is 28% lower than that of non-PMF treatment. As a result, PMF stimulus is proposed to achieve an improvement of RBCs aggregation and prevent RBCs from oxidative stress, and could be used in various clinical fields related to peripheral vascular diseases. For further clinical application, we need to optimize PMF intensity and stimulated duration.

This study aimed to determine the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the physiological response of phagocytes to an infectious agent. THP-1 cells (human monocytic leukemia cell line) were cultured and 50 Hz, 1 mT EMF was applied for 4-6 h to cells induced with Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFγ/LPS). Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock protein 70 levels (hsp70), cGMP levels, caspase-9 activation, and the growth rate of S. aureus were determined. The growth curve of exposed bacteria was lower than the control. Field application increased NO levels. The increase was more prominent for S. aureus-induced cells and appeared earlier than the increase in cells without field application. However, a slight decrease was observed in iNOS levels. Increased cGMP levels in response to field application were closely correlated with increased NO levels. ELF-EMF alone caused increased hsp70 levels in a time-dependent manner. When cells were induced with S. aureus or IFγ/LPS, field application produced higher levels of hsp70. ELF-EMF suppressed caspase-9 activation by a small extent. These data confirm that ELF-EMF affects bacterial growth and the response of the immune system to bacterial challenges, suggesting that ELF-EMF could be exploited for beneficial uses.

The purpose of this study is to investigate the possible effect of an extremely low-frequency magnetic field (ELF-MF) on nitric oxide (NO) level. In this study, 27 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control (sham-exposed). The first and second experimental group (n = 10) were exposed to 100 microT and 500 microT ELF-MF during 10 months, 2 h a day, respectively, and the third (n = 7) group was treated like an experimental group except for ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, serum nitrite levels were measured by Griess reaction. A significant reduction was observed in nitrite levels among the first and second experimental groups of rats and sham-exposed rats after exposure for 10 months, 2 h a day, to ELF-MF of 100 and 500 microT (p < 0.01). These results suggest that prolonged ELF-MF exposure at intensities of exposure limits, determined by ICNIRP for public and occupational, may reduce NO production probably affected by NO generation pathways.

This study was aimed to investigate the effect of extremely low-frequency magnetic field (ELF-MF) on apoptosis and oxidative stress values in the brain of rat. Rats were exposed to 100 and 500 microT ELF-MF, which are the safety standards of public and occupational exposure for 2 h/day for 10 months. Brain tissues were immunohistochemically stained for the active (cleaved) caspase-3 in order to measure the apoptotic index by a semi-quantitative scoring system. In addition, the levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in rat brain. Final score of apoptosis and MPO activity were not significantly different between the groups. CAT activity decreased in both exposure groups (p < 0.05), while TAC was found to be lower in ELF 500 group than those in ELF-100 and sham groups (p < 0.05). MDA, TOS, and OSI values were found to be higher in ELF-500 group than those in ELF-100 and sham groups (p < 0.05). In conclusion, apoptosis was not changed by long-term ELF-MF exposure, while both 100 and 500 microT ELF-MF exposure induced toxic effect in the rat brain by increasing oxidative stress and diminishing antioxidant defense system.

Several studies still state that presently accepted safety standards for extremely low-frequency magnetic fields (ELF-MFs) do not provide adequate protection, and therefore the standards are still open to question. To help resolve this question, the aim of this study was to illuminate the interaction between biomolecules and ELF-MFs by investigating the effect of ELF-MFs on beta-amyloid protein (BAP), protein carbonyl (PC) and malondialdehyde (MDA) in rat brain. For this study, 30 adult male Sprague-Dawley rats were used, which were divided into two experimental groups and a sham exposed group. Rats in two experimental groups were exposed to 100- and 500-μT ELF-MFs (50 Hz) for 2 h/day for 10 months, which are the generally accepted safety standards for public and occupational exposures. The same procedures were applied to the rats in the sham group, but with the generator turned off. The results of this study showed that neither ELF-MFs used in this study altered BAP level significantly (p>0.05). However, PC and MDA levels were increased by the exposure to 100- and 500-μT ELF-MFs (p<0.0001). In conclusion, both PC and MDA levels were altered by long-term exposure to either 100 or 500 μT ELF-MF. However, many further and more comprehensive studies will be required to elucidate the interaction mechanisms between ELF-MFs exposure and living organisms.

Abstract Purpose: The purpose of this study was to determine whether 50 Hz Extremely Low Frequency-Magnetic Fields (ELF-MFs) affects apoptotic processes, oxidative damage, and reproductive characteristics such as sperm count and morphology in rat testes.
Materials and Methods: 30 male Sprague-Dawley rats were used in the present study, which were divided into three groups (sham group, n: 10, and two experimental groups, n: 10 for each group). Rats in the experimental group were exposed to 100 and 500 μT ELF-MF (2h/day, 7 days/week, for 10 months) corresponding to exposure levels that are considered safe for humans. Same experimental procedures were applied to the sham group, but the ELF generator was turned off. Tissues from the testes were immunohistochemically stained for active (cleaved) caspase-3 in order to measure the apoptotic index by a semi-quantitative scoring system. The levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were also measured. Additionally, epididymal sperm count and sperm morphology was evaluated. Results: There were no significant differences in the reproductive and oxidative stress parameters between the sham group and the exposed groups (p>0.05). While no difference was observed between the final apoptosis score of the sham and the 100 μT ELF-MF group (p>0.05), the final apoptosis score was higher in the 500 μT ELF-MF exposure group than in the sham group (p<0.05). Conclusion: Long-term exposure to 100 μT and 500 μT ELF-MF did not affect oxidative or antioxidative processes, lipid peroxidation, or reproductive components such as sperm count and morphology in testes tissue of rats. However, long-term exposure to 500 μT ELF-MF did affect active-caspase-3 activity, which is a well-known apoptotic indicator.

The aim of the study was to investigate the effects of extremely low-frequency electric field (ELF EF) on visual evoked potential (VEP), thiobarbituric acid reactive substances (TBARS), total antioxidant status (TAS), total oxidant status (TOS), and oxidant stress index (OSI). Thirty female Wistar rats, aged 3 months, were divided into three equal groups: Control (C), the group exposed to EF at 12 kV/m strength (E12), and the group exposed to EF at 18 kV/m strength (E18). Electric field was applied to the E12 and E18 groups for 14 days (1 h/day). Brain and retina TBARS, TOS, and OSI were significantly increased in the E12 and E18 groups with respect to the control group. Also, TBARS levels were significantly increased in the E18 group compared with the E12 group. Electric fields significantly decreased TAS levels in both brain and retina in E12 and E18 groups with respect to the control group. All VEP components were significantly prolonged in rats exposed to electric fields compared to control group. In addition, all latencies of VEP components were increased in the E18 group with respect to the E12 group. It is conceivable to suggest that EF-induced lipid peroxidation may play an important role in changes of VEP parameters.
In our previous study, the developmental effects of extremely low-frequency electric fields (ELF-EF) on visual and somatosensory evoked potentials in adult rats were studied. There is no study so far examining the effects of 50 Hz electric field (EF) on mismatch negativity (MMN) recordings after exposure of rats during development. Therefore, our present study aimed to investigate MMN and oxidative brain damage in rats exposed to EF (12 kV/m, 1 h/day). Rats were divided into four groups, namely control (C), prenatal (Pr), postnatal (Po), and prenatal+postnatal (PP). Pregnant rats of Pr and PP groups were exposed to EF during pregnancy. Following birth, rats of PP and Po groups were exposed to EF for three months. After exposure to EF, MMN was recorded by electrodes positioned stereotaxically to the surface of the dura, and then brain tissues were removed for histological and biochemical analyses. The MMN amplitude was higher to deviant tones than to standard tones. It was decreased in all experimental groups compared with the C group. 4-Hydroxy-2-nonenal (4-HNE) levels were significantly increased in the Po group with respect to the C group, whereas they were significantly decreased in the PP group compared with Pr and Po groups. Protein carbonyl levels were significantly decreased in the PP group compared with C, Pr, and Po groups. EF decreased MMN amplitudes were possibly induced by lipid peroxidation.

BACKGROUND: The aim of this study was to investigate the effect of extremely low frequency magnetic fields (ELFMF) on the uterus and ovary of rats. MATERIAL/METHODS: Forty-eight female Wistar albino rats were divided into two groups, one for 50 and the other for 100 days of exposure. Each group was further divided into two groups, one sham exposed (n=12) and the other the experimental group (n=12). The experimental rats were exposed to 50-Hz 1-mT ELFMF for three hours/day for 50 or 100 days. The sham groups of rats were kept under the same circumstances without applying ELFMF. Electron microscopic examination was performed to evaluate the ovaries and uterus. RESULTS: Ultrastructural dissolution, decrease in cell organelles, cavities in cells, heterochromative appearance, and typical structural loss of the nucleus were observed in germinal epithelial cells of the rat ovaries in the 50-days ELFMF exposure group. Ultrastructural alterations in germinal epithelium and tunica albuginea of ovaries, irregularity in nucleus and nucleolus, increase in lipid vacuoles of cell cytoplasm and reduction in organelles were observed in rat ovaries in the 100-days ELFMF exposure group. Similar alterations were observed in uterus. Malondialdehyde concentration (MDA) of the ovaries and uterus increased in rats of the two exposure groups (p<0.001). CONCLUSIONS: The results of the study showed that 50 and 100 days of exposure to a 1-mT ELFMF can cause alterations at the cellular level and in MDA concentration.

In recent years extremely low-frequency magnetic fields (ELF-EMF) have become widely used in human activities, leading to an increased chance of exposure to ELF-EMF. There are few reports on in vivo mammalian genotoxic effects using micronucleus (MN) assays, which generally have been used as a short-term screening system. We analyzed the possible genotoxic effect induced by long-term exposure (7, 14, 21, 28 d) of a 50 Hz ELM-MF to mice by measuring the increase in frequency of micronucleated polychromatic erythrocyte in their bone marrow (MNPCEs) and we compared it with that induced by 50 cGy of X-rays. Subsequently, we tried to reduce this chromosomal damage by administering four antioxidants substances with radioprotective capacities: dimethyl sulfoxide (DMSO), 6-n-propyl-2-thiouracil (PTU), grape-procyanidins (P) and citrus flavonoids extract (CE). The increase in micronucleated cells was higher in both physical treatments (Control < ELF-EMF (p < 0.01) <X-rays (p > 0.001)); however, the antioxidant substances only showed a genoprotective capacity against the damage induced by ionizing radiation (Ci > PTU = DMSO (p < 0.001) >P = CE (p < 0.001). The 50 Hz ELM-MF increased MNPCEs in mouse bone marrow, expressing a genotoxic capacity. Administration of antioxidant substances with radioprotective capacities known to act through the elimination of free radicals did not diminish the genotoxic effect induced by ELM-MF.

The current study analyzed proteins and nuclear DNA of electric fields (ELF) exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isozymes, random amplified polymorphic DNA (RAPD), and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100%) based on zymograms number, relative front (R f), and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08%) based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38%) and tail moment unit (5.36) at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of
maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors.

The present study was undertaken to determine the effect of co-exposure to static magnetic field (SMF) and cadmium (Cd) on the antioxidant enzymes activity and DNA integrity in rat brain. Sub-chronic exposure to CdCl (CdCl(2), 40 mg/L, per os) for 30 days resulted in a significant reduction in antioxidant enzyme activity such as the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) in frontal cortex and hippocampus. Total GSH were decreased in the frontal cortex of the Cd-exposed group. Cd exposure induced an increase in malondialdehyde (MDA) concentration in the frontal cortex and hippocampus. Moreover, the same exposure increased 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) level in rat brain. Interestingly, the combined effect of SMF (128 mT, 1 hour/day for 30 consecutive days) and CdCl (40 mg/L, per os) decreased the SOD activity and glutathione level in frontal cortex as compared with the Cd group. Moreover, the association between SMF and Cd increased MDA concentration in frontal cortex as compared with Cd-exposed rats. DNA analysis revealed that SMF exposure failed to alter 8-oxodGuo concentration in Cd-exposed rats. Our data showed that Cd exposure altered the antioxidant enzymes activity and induced oxidative DNA lesions in rat brain. The combined effect of SMF and Cd increased oxidative damage in rat brain as compared with Cd-exposed rats.

The present study was undertaken in order to investigate the effects of static magnetic field (SMF) exposure on the antioxidative enzymes activity, malondialdehyde (MDA) concentration and DNA oxidation in male rat brain. The exposure of rats to SMF (128 mT, 1 h/day during 30 consecutive days) decreased the glutathione peroxidase (GPx; -39%, p < 0.05), CuZn superoxide dismutase (CuZn-SOD; -35%, p < 0.05) and catalase (-59%, p < 0.05) activities in frontal cortex. The same treatment decreased the CuZn-SOD (-51%, p < 0.05) and Mn-SOD (-13%, p < 0.05) activities in hippocampus. However, the glutathione levels remained unchanged in the both brain structures. In the hippocampus, SMF exposure increased MDA concentration (+32%, p < 0.05). Interestingly, exposed-rats to SMF displayed a significant increase of metallothioneins level in frontal cortex (+100%, p < 0.05), while the 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) concentration remained unaffected, indicating the absence of DNA oxidation. Our
results indicated that sub-chronic exposure to SMF induced oxidative stress in rat hippocampus and frontal cortex. Metallothionein induction protected probably DNA against oxidative damage.

AIMS: Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. MAIN METHODS: Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50Hz, single 2h and 2weeks 2h a day). Loco motor behavior was assessed by using Open-Field Test (OFT) followed by FST to evaluate the immobility time. Accordingly, NΩ-nitro-L-arginine methyl ester 30mg/kg was used to exert anti-depressant like effect. KEY FINDINGS: According to the results, short term exposure did not alter the immobility time, whereas long term exposure significantly reduces immobility time (p<0.01). However, it was revealed that the locomotion did not differ among all experimental groups. Short term exposure reversed the anti-depressant like effect resulting from 30 mg/kg of NΩ-nitro-L-arginine methyl ester (p<0.01). SIGNIFICANCE: It has been concluded that long term exposure could alter the depressive disorder in mice, whereas short term exposure has no significant effect. Also, reversing the anti-depressant activity of L-NAME indicates a probable increase in the brain nitric oxide.

Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H$_2$O$_2$) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth),
biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes.

Thirteen million cancer deaths and 21.7 million new cancer cases are expected in the world by 2030. Glioblastoma is the most common primary malignant tumor of the central nervous system which is the most lethal type of primary brain tumor in adults with the survival time of 12-15 months after the initial diagnosis. Glioblastoma is the most common and most malignant type of brain tumor, and despite surgery, chemotherapy and radiation treatment, the average survival of patients is about 14 months. The current research showed that the frequency magnetic field (FMF) and static magnetic field (SMF) can influence cancer cell proliferation and coupled with anticancer drugs may provide a new strategy for cancer therapy. At the present study, we investigated the effects of FMF (10 Hz, 50 G), SMF (50 G) and Temozolomide (200 μm) on viability, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172) by MTT, NBT, RT-PCR and Western blot. Results showed that the effect of Temozolomide (TMZ) with SMF and FMF together increased the cytotoxicity, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172).

The time-course of ELF-EMF application to biological systems is thought to be an important parameter determining the physiological outcome. This study investigated the effect of ELF-EMF on the differentiation of K562 cells at different time courses. ELF-EMF (50 Hz, 5 mT, 1 h) was applied at two different time-courses; first at the onset of hemin induction for 1 h, and second, daily 1 h for four days. While single exposure to ELF-EMF resulted in a decrease in differentiation, ELF-EMF applied everyday for 1 h caused an increase in differentiation. The effect of co-stressors, magnesium, and heat-shock was also determined and similar results were obtained. ELF-EMF increased ROS levels in K562 cells not treated with hemin, however did not change ROS levels of hemin treated cells indicating that ROS was not the cause. Overall, these results imply that the time-course of application is an important parameter determining the physiological response of cells to ELF-EMF.

Extremely low frequency electromagnetic fields have been classified as a possible human carcinogen by the International Agency for Research on Cancer and this has raised some concern about its health effects on employees extensively exposed to these fields at thermal power plants. In this study, the effect of using vitamin E and C supplements have been examined on employees working at a thermal power plant. In this randomized controlled, double-blind clinical trial, 81 employees from different parts of the thermal power plant were enrolled between July and November 2017, and divided into four groups: Group 1 received vitamin E (400 units/day), Group 2: vitamin C (1000 mg/day), Group 3: vitamin E + C and Group 4: no intervention. DNA damage was measured in peripheral blood lymphocytes using comet assay and apoptosis, using flow cytometry. Based on the results, tail intensity and tail length in the vitamin E group, and all comet assay indices in the vitamin E + C and vitamin C groups (except DNA damage index) significantly decreased after the intervention, while the comet assay indices did not change significantly in the control group. None of the flow cytometry indices including early apoptosis, late apoptosis and necrosis changed after intervention in either group. The use of antioxidant vitamins such as E and C, can increase the activity of the non-enzymatic antioxidant defense system, and protect DNA from damage caused by exposure to extremely low frequency magnetic fields. But, taking these vitamins has no effect on apoptosis. It seems that consumption of vitamin E affected all investigated comet assay indices and can be probably considered as the best intervention.

Barnes F, Greenebaum B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ Res. 163:165-170, 2018. (Review)

Radio frequency electromagnetic fields (RF) have been shown to modify the concentrations of the radical O$_2^-$, H$_2$O$_2$ and cancer cell growth rates at exposure levels below those that cause significant heating. Reactive oxygen species (ROS) are both signaling molecules and species that can do damage, depending on timing, location and concentrations. We briefly look at some mechanisms by which electromagnetic fields can modify the concentrations of ROS and some of the feedback and repair processes that lead to variable biological effects. Of particular interest are the role of radical pairs and their spins, which have received considerable attention recently, and the role of feedback in biological systems, to which less attention has been paid.

Several studies have indicated that weak, extremely-low-frequency (ELF; 1-100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7-15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 microT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 microT, with an angle of 66 degrees from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 microT, but not at 5.6 microT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles.

Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.
The influence of weak magnetic fields of different types on the rate of formation of reactive oxygen species in mouse peritoneal neutrophils has been studied. It was found that the exposure of neutrophils activated by phorbol 12-myristate 13-acetate to the magnetic field tuned to the parametric resonance for Ca2+ ions leads to a decrease in the rate of the reactive oxygen species (ROS) generation by 23%. Conversely, the generation of ROS in neutrophils exposed to the same field but stimulated by the bacterial peptide FMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine) increased by about 21%. Pulsed magnetic fields also changed the rate of ROS generation in phorbol-stimulated neutrophils by about 20%, but the sign of the effects observed in this case was opposite to those induced by the magnetic field tuned to the parametric resonance for Ca2+ ions.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, with an etiopathogenesis involving both genetic and environmental factors. The occupational/residential exposure to the electromagnetic fields has been recently associated with an increased risk of neurodegenerative diseases; it has been thus proposed that the extremely low frequency magnetic field (ELF-MF) may contribute to neurodegenerative etiopathogenesis, as its interaction with biological systems directly impairs redox homeostasis in specific areas of the brain. The molecular mechanisms elicited by ELF-MF, and their potential involvement in PD onset, still remain unclear. To this end, we set up a generator of ELF-MF able to stably and homogeneously reproduce environmental prolonged exposure to ELF-MF (50 Hz, 1 mT). Results obtained indicate that ELF-MF exposure alters cell response of SH-SY5Y cells to MPP⁺. We demonstrate that ELF-MF does not affect per se survival, shape, and morphology of both proliferating and differentiated SH-SY5Y cells but significantly impairs redox homeostasis and thiol content, triggering an increase in protein carbonylation. As a result, toxicity of MPP⁺, even at low doses, is highly enhanced in ELF-MF-exposed cells due to a significant increase in ROS levels, potentiation of oxidative damage, and induction of a caspase-dependent apoptosis. Pre-incubation with the thiol antioxidants N-acetyl-L-cysteine and GSH ethyl-ester significantly reduces the extent of oxidative damage and protects cells from death induced by the combined treatment ELF-MF/MPP⁺. Taken overall, our results demonstrate the redox-based molecular interaction between ELF-MF and PD neurotoxins in vitro, and open a new scenario for defining the synergy of environmental factors in PD onset.
One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.

Seeds of cucumber were exposed to static magnetic field strength from 100 to 250 mT for 1, 2 or 3 h. Germination-percentage, rate of germination, length of seedling and dry weight increased by 18.5, 49, 34 and 33% respectively in magnetoprimed seeds compared to unexposed seeds. Among different magnetic field doses, 200 mT for 1 h showed significant effect on germination parameters and hence selected for studying changes in water uptake, 1H transverse relaxation time (T_2), hydrolytic enzymes, reactive oxygen species and antioxidant enzyme system in germinating seeds. Water uptake and T_2 values were significantly higher in treated seeds during imbibition. The activities of hydrolytic enzymes, amylase and protease were greater than the untreated controls by 51% and 13% respectively. Superoxide radicals also enhanced by 40% and hydrogen peroxide by 8% in magnetically exposed seeds. In magnetoprimed seeds, increased activities of antioxidant enzymes, superoxide dismutase (8%), catalase (83%) and glutathione reductase (77%) over control was recorded. We report that magnetopriming of dry seeds can be effectively used as a pre-sowing
treatment for seed invigoration in cucumber. Unlike other priming treatments seed is not required to be dehydrated after priming, allowing easy storage.

To elucidate the mechanism responsible for magnetic field induced seed invigoration in aged seeds an experiment was conducted on six year old garden pea seeds stored under controlled (20 °C and 40% RH) condition. Aged seeds were magnetoprimed by exposing to pulsed magnetic field (PMF) of 100 mT for 1 h in three pulsed modes. The 6 min on and off PMF showed significant improvement in germination (7.6%) and vigor (84.8%) over aged seeds. Superoxide and hydrogen peroxide production increased in germinating primed seeds by 27 and 52%, respectively, over aged seeds. Nicotinamide adenine dinucleotide (reduced) (NADH) peroxidase and superoxide dismutase involved in generation of hydrogen peroxide showed increased activity in PMF primed seeds. Increase in catalase, ascorbate peroxidase and glutathione reductase activity after 36 h of imbibition in primed seeds demonstrated its involvement in seed recovery during magnetopriming. An increase in total antioxidants also helped in maintaining the level of free radicals for promoting germination of magnetoprimed seeds. A 44% increase in level of protein carbonyls after 36 h indicated involvement of protein oxidation for counteracting and/or utilizing the production of ROS and faster mobilization of reserve proteins. Higher production of free radicals in primed seeds did not cause lipid peroxidation as malondialdehyde content was low. Lipoxygenase was involved in the germination associated events as the magnitude of activity was higher in primed aged seeds compared to aged seeds. Our study elucidated that PMF mediated improvement in seed quality of aged pea seeds was facilitated by fine tuning of free radicals by the antioxidant defense system and protein oxidation.

The radical pair mechanism is discussed as a possible route whereby a magnetic field of environmental strength might affect a biological system. It is well established as the origin of reproducible field effects in chemistry, and these can be observed even at very low magnetic field strengths, including that of the geomagnetic field. Here it is attempted to give a description which might assist experimentalists working in biological laboratories to device tests of its relevance to their work. The mechanism is well understood and a specific theoretical approach is taken to explore and emphasize the importance of the lifetime of the radical pair and the precise chemical natures of the radicals which comprise it in affecting the size of the low-field effects. Further subsequent processes are likely necessary to cause this primary effect to attain biological significance. Arguments are provided to suggest that the encounters of freely diffusing pairs (F-pairs) of radicals are unlikely to produce significant effects in biology.

PURPOSE: The aim of the study was to determine how free radicals generation in blood platelets exposed to electromagnetic field (EMF) occurring in cars affects the process of these morphotic elements cell membranes phospholipid peroxidation. MATERIAL AND METHODS: The suspension of human blood platelets was exposed to EMF of proper characteristics in a specially arranged research stand. After 30, 60 and 90 min exposure of the platelet specimen to EMF, free radicals generation was measured with chemiluminescence and malondialdehyde concentration according to Placer et al. method. The obtained results were compared with the control values. RESULTS: The increase of free radicals generation was observed after 30 and 90 min exposure of platelets to magnetic field. Malondialdehyde reached the highest values also after 30 and 90 min exposure of the platelets to EMF as compared to the control. CONCLUSIONS: The increase in oxygen reactive species generation under the effect of exogenic magnetic radiation as well as proportional intensification of the peroxidation process determined on the basis of malondialdehyde concentration (the marker of this phenomenon) point to the platelet sensitivity to the investigated environmental factor.

OBJECTIVE: The aim of the study was to evaluate the effects of a 28-day exposure to a 50 Hz electromagnetic field of 10 kV/m on the oxidative stress in selected rat central nervous system (CNS) structures. MATERIAL AND METHODS: Twenty male Wistar rats served as experimental subjects. Ten rats were exposed to an electromagnetic field with a frequency of 50 Hz, intensity of 10 kV/m, and magnetic induction of 4.3 pT for 22 hours a day. The control group of ten rats was subject to sham exposure. Homogenates of the frontal cortex, hippocampus, brainstem, hypothalamus, striatum, and cerebellum were evaluated for selected parameters of oxidative stress. RESULTS: Following the four-week exposure to a low-frequency electromagnetic field, the mean malondialdehyde levels and total oxidant status of CNS structures did not differ significantly between the experimental and control groups. However, the activities of antioxidant enzymes in brain structure homogenates were decreased except for frontal cortex catalase, glutathione peroxidase, and hippocampal glutathione reductase. The low-frequency electromagnetic field had no effect on the nonenzymatic antioxidant system of the examined brain structures except for the frontal cortex. CONCLUSION: The four-week exposure of male rats to a low-frequency electromagnetic field did not affect oxidative stress in the investigated brain structures.
The aim of this study was to assess the influence of cisplatin and an extremely low frequency electromagnetic field (ELF-EMF) on antioxidant enzyme activity and the lipid peroxidation ratio, as well as the level of DNA damage and reactive oxygen species (ROS) production in AT478 carcinoma cells. Cells were cultured for 24 and 72 h in culture medium with cisplatin. Additionally, the cells were irradiated with 50 Hz/1 mT ELF-EMF for 16 min using a solenoid as a source of the ELF-EMF. The amount of ROS, superoxide dismutase (SOD) isoenzyme activity, glutathione peroxidase (GSH-Px) activity, DNA damage, and malondialdehyde (MDA) levels were assessed. Cells that were exposed to cisplatin exhibited a significant increase in ROS and antioxidant enzyme activity. The addition of ELF-EMF exposure to cisplatin treatment resulted in decreased ROS levels and antioxidant enzyme activity. A significant reduction in MDA concentrations was observed in all of the study groups, with the greatest decrease associated with treatment by both cisplatin and ELF-EMF. Cisplatin induced the most severe DNA damage; however, when cells were also irradiated with ELF-EMF, less DNA damage occurred. Exposure to ELF-EMF alone resulted in an increase in DNA damage compared to control cells. ELF-EMF lessened the effects of oxidative stress and DNA damage that were induced by cisplatin; however, ELF-EMF alone was a mild oxidative stressor and DNA damage inducer. We speculate that ELF-EMF exerts differential effects depending on the exogenous conditions. This information may be of value for appraising the pathophysiologic consequences of exposure to ELF-EMF.

Biological effects of man-made electromagnetic fields (EMFs) have been studied so far by experimental approaches exposing animals and cell cultures to EMFs. However, the evidence for cell toxicity induced by static magnetic field (SMF) is still uncertain. We investigated the effects produced by the exposure of human SH-SY5Y neuronal-like cells to a uniform magnetic field at intensities of 2.2 mT, which is less than the recommended public exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). A decrease of membrane mitochondrial potential up to 30% was measured after 24 h of exposure to SMF in SH-SY5Y cells, and this effect was associated with reactive oxygen species production increase. Fourier transform infrared spectroscopy (FTIR) analysis showed that exposure to a static magnetic intensity around 2.2 mT changed the secondary structure of cellular proteins and lipid components. The vibration bands relative to the methylene group increased significantly after 4 h of exposure, whereas further exposure up to 24 h produced evident shifts of amide I and II modes and a relative increase in β-sheet
contents with respect to α-helix components. Our study demonstrated that a moderate SMF causes alteration in cell homeostasis, as indicated by FTIR spectroscopy observations of changes in protein structures that are part of cell response to magnetic field exposure.

Some epidemiological studies have suggested possible associations between exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and various diseases. Recently, ELF-EMF has been considered as a therapeutic agent. To support ELF-EMF use in regenerative medicine, in particular in the treatment of skin injuries, we investigated whether significant cell damage occurs after ELF-EMF exposure. Reactive oxygen species (ROS) production was evaluated in the human keratinocyte exposed for 1 H to 50 Hz ELF-EMF in a range of field strengths from 0.25 to 2 G. Significant ROS increases resulted at 0.5 and 1 G and under these flux densities ROS production, glutathione content, antioxidant defense activity, and lipid peroxidation markers were assessed for different lengths of time. Analyzed parameters of antioxidant defense and membrane integrity showed a different trend at two selected magnetic fluxes, with a greater sensitivity of the cells exposed to 0.5 G, especially after 1 H. All significant alterations observed in the first 4 H of exposure reverted to controls 24 H after suggesting that under these conditions, ELF-EMF induces a slight oxidative stress that does not overwhelm the metabolic capacity of the cells or have a cytotoxic effect.

The chemiluminescence of luminol, after 1 and 2 h in vitro exposure of human serum to 50 Hz electric fields of different intensities, decreases as compared to the controls. This indicates a field-induced decrease in the concentration of the free radicals. The report is limited to the key kinetic and field data, inviting independent kinetic analysis of the data in terms of reaction moments or reaction susceptibilities for the various normal modes indicated by the data.

The purpose of this article is to evaluate magnetic field effects (50 Hz, different magnetic intensities) on the chemiluminescence intensity of human serum. We find that 1 and 2 h of exposure increased the chemiluminescence emission. The addition to the serum of prooxidants FeCl(2) and H(2)O(2) in different concentrations increased the chemiluminescence intensity even more.
Magnetic fields (MFs) can affect biological systems by increasing the release of free radicals that are able to alter cell defense systems and breakdown tissue homeostasis. In the present study, the effects of extremely low frequency (ELF) electromagnetic fields (EMF) were investigated on free radical levels, natural antioxidant systems and respiratory burst system activities in heart and liver tissues of guinea pigs exposed to 50 Hz MFs of 1, 2 and 3 mT for 4 h/day and 8 h/day for 5 days by measuring malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH) levels and myeloperoxidase (MPO) activity. A total of sixty-two male guinea pigs, 10-12 weeks old were studied in seven groups as control and exposure groups: Group I (control), II (1 mT, 4 h/day), III (1 mT, 8 h/day), IV (2 mT, 4 h/day), V (2 mT, 8 h/day), VI (3 mT, 4 h/day), and VII (3 mT, 8 h/day). Controls were kept under the same conditions without any exposure to MF. MDA levels increased in liver in groups II and IV, but decreased in group VII for both liver and heart tissues. NOx levels declined in heart in groups II and III and in liver in groups III, V, and VI, but increased in liver in group VII. GSH levels increased in heart in groups II, IV, V, and in liver in groups V and VI and VI, but decreased in groups II and IV in liver. MPO activity decreased in liver in groups III, IV, VI and VII with respect to controls and in heart tissues in groups II, III and IV; however, there was a significant increase MPO activity in heart in group VII. From the results, it can be concluded that the intensity and exposure duration of MFs are among the effective conditions on the formation of free radicals and behaviour of antioxidant enzymes.

Power frequency magnetic fields (PFMF) have been reported to affect several cellular functions, such as cell proliferation and apoptosis. In this study, we investigated the effects of PPFM on mouse embryonic fibroblasts (MEF) autophagy. After cells were exposed to 50 Hz PPFM at 2 mT for 0.5 h, 2 h, 6 h, 12 h, and 24 h, we observed a significant increase in autophagic markers at 6 h, including (i) higher microtubule-associated protein 1 light chain 3-II (LC3-II), (ii) the increased formation of GFP-LC3 puncta, and (iii) increased numbers of autophagic vacuoles under transmission electron microscope. Moreover, we provide convincing evidence using chloroquine (CQ) that the increase of autophagic markers was the result of enhanced autophagic flux and not the suppression of lysosomal function. In a search for molecular mechanisms underlying PFMF-mediated autophagy, we observe that the autophagic process involved reactive oxygen species (ROS) and was independent of the mammalian target of rapamycin (mTOR) signaling pathway.
We studied biophoton characteristics of Madin-Darby canine kidney (MDCK) cells under the influence of H2O2 by employing a photomultiplier tube (PMT) and a fluorescence microscope. H2O2 was used for producing reactive oxygen species (ROS) in the measurement. Images from a fluorescence microscope show an increase of photon intensity emitted from the sample due to H2O2. By using a PMT we measured quantitative change in biophoton emission with application of H2O2 to the MDCK cell culture, found that the increase of the biophoton is dependent upon the amount of H2O2. The agreement between the results of the PMT and the fluorescence microscope suggests the possibility of quantitative measurement of the influence of ROS on living tissue or cell. In addition we applied a 60 Hz AC magnetic field on the cells to investigate the change in reaction between MDCK cell and ROS. It showed that a decay of chemiluminescence intensity has taken a different path following exposure to the magnetic field. As a result, the PMT measurement might be considered as a useful tool for studying biochemical characteristics in relation to ROS.

We have investigated whether extremely low frequency magnetic field (ELF-MF) induces lipid peroxidation and reactive oxygen species in mouse cerebellum. After exposure to 60 Hz ELF-MF at 2.3 mT intensity for 3 hours, there was a significant increase in malondialdehyde level and hydroxyl radical. ELF-MF significantly induced concomitant increase in superoxide dismutase without alteration in glutathione peroxidase activity. While glutathione contents were not altered, ascorbic acid levels were significantly decreased by ELF-MF exposure. These results indicate that ELF-MF may induce oxidative stress in mouse cerebellum. However, the mechanism remains further to be characterized.

This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and γ -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to
ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.

As a result of ischaemia/reperfusion, massive generation of reactive oxygen species occurs, followed by decreased activity of antioxidant enzymes. Extremely low frequency electromagnetic fields (ELF-EMF) can modulate oxidative stress, but there are no clinical antioxidant studies in brain stroke patients. The aim of our study was to investigate the effect of ELF-EMF on clinical and antioxidant status in post-stroke patients. Fifty-seven patients were divided into two groups: ELF-EMF and non-ELF-EMF. Both groups underwent the same 4-week rehabilitation program. Additionally, the ELF-EMF group was exposed to an ELF-EMF field of 40 Hz, 7 mT for 15 min/day for 4 weeks (5 days a week). The activity of catalase and superoxide dismutase was measured in hemolysates, and total antioxidant status (TAS) determined in plasma. Functional status was assessed before and after the series of treatments using Activities of Daily Living (ADL), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Applied ELF-EMF significantly increased enzymatic antioxidant activity; however, TAS levels did not change in either group. Results show that ELF-EMF induced a significant improvement in functional (ADL) and mental (MMSE, GDS) status. Clinical parameters had positive correlation with the level of enzymatic antioxidant protection.

Nitric oxide (NO) is one of the most important signal molecules, involved in both physiological and pathological processes. As a neurotransmitter in the central nervous system, NO regulates cerebral blood flow, neurogenesis, and synaptic plasticity. The aim of our study was to investigate the effect of the extremely low-frequency electromagnetic field (ELF-EMF) on generation and metabolism of NO, as a neurotransmitter, in the rehabilitation of poststroke patients. Forty-eight patients were divided into two groups: ELF-EMF and non-ELF-EMF. Both groups underwent the same 4-week rehabilitation program. Additionally, the ELF-EMF group was exposed to an extremely low-frequency electromagnetic field of 40 Hz, 7 mT, for 15 min/day. Levels of 3-nitrotyrosine, nitrate/nitrite, and TNFα in plasma samples were measured, and NOS2 expression was determined in whole blood samples. Functional status was evaluated before and after a series of treatments, using the Activity Daily Living, Geriatric Depression Scale, and
Mini-Mental State Examination. We observed that application of ELF-EMF significantly increased 3-nitrotyrosine and nitrate/nitrite levels, while expression of NOS2 was insignificantly decreased in both groups. The results also show that ELF-EMF treatments improved functional and mental status. We conclude that ELF-EMF therapy is capable of promoting recovery in poststroke patients.

INTRODUCTION: Low-frequency magnetic field is widely applied as magnetotherapy in physiotherapeutic treatment. Recognition of positive and negative effects of the magnetic field has been the subject of numerous studies. Experimental studies concern, among others, the effect of this field on the heart rate and plasma antioxidant capacity. The aim of the study was to check whether a time-variable magnetic field of constant frequency and induction affects the heart rate and plasma antioxidant capacity. MATERIAL AND METHODS: The tests were performed on Spraque-Dawley rats exposed to the magnetic field of the following parameters: frequency - 40 Hz, induction - 7 mT, time of exposure - 30 and 60 minutes. The measurements of ECG and plasma antioxidant capacity expressed in the number of reduced iron ions were performed on experimental animals: before, after a single exposure and after 14 days of exposure. RESULTS: A significant decrease of the heart rate was observed after 14 days of exposure. A variable magnetic field of the parameters: frequency - 40 Hz, induction - 7 mT and exposure time of 14 days caused an increase of the organism antioxidant defence, whereas a variable magnetic field of the frequency of 40 Hz, induction - 7 mT and exposure time 60 minutes for 14 days caused a significant decrease of the organism antioxidant defence. CONCLUSIONS: The exposure time affects heart rate, plasma antioxidant capacity and the organism defense ability against free radicals.

Free radicals are atoms, molecules or their fragments, which excess leads to the development of the oxidative stress, which is caused of many neoplasmic, neurodegenerative, inflammatory diseases and aging the organism. The main of exogenous sources of free radicals are among others: industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field. The low magnetic field is applied in the physician therapy. The aim of this study was to evaluate the influence of low magnetic field on the parameters of oxidative stress in rat's muscles. MATERIALS AND METHODS: Thirty male rats, weight of 280-300 g were randomly divided into three experimental groups: control I and treatment II and III (ELFMF-exposed), each containing seven animals. Animals in treat group II were exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days (this kind of the ELFMF is mostly use in magnetotherapy) while, group III was exposed to 40 Hz, 7 mT for 1 h/day for 14 days. Control rats were in separate room without exposing to ELFMF. Immediately after the last exposure, the part of muscles was taken under pentobarbital anaesthesia. The effects of exposure to ELFMF
RESULTS: Exposure to ELFMF: 40 Hz, 7 mT, 30 and 60 min/day used for 2 weeks caused significant increase in -SH group concentration and decrease of the protein concentration in the muscles homogenates.

CONCLUSION: Low magnetic field used in magnetotherapy causes the significant changes of the generating the reactive forms of oxygen in the muscles which depend on the parameters of low magnetic field.

Extremely low frequency magnetic field (ELF-MF) may result in oxidative DNA damage and lipid peroxidation with an ultimate effect on a number of systemic disturbances and cell death. The aim of the study is to assess the effect of ELF-MF parameters most frequently used in magnetotherapy on reactive oxygen species generation (ROS) in brain tissue of experimental animals depending on the time of exposure to this field. The research material included adult male Sprague-Dawley rats, aged 3-4 months. The animals were divided into 3 groups: I - control (shame) group; II - exposed to the following parameters of the magnetic field: 7 mT, 40 Hz, 30 min/day, 10 days; III - exposed to the ELF-MF parameters of 7 mT, 40 Hz, 60 min/day, 10 days. The selected parameters of oxidative stress: thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H(2)O(2)), total free sulphhydryl groups (-SH groups) and protein in brain homogenates were measured after the exposure of rats to the magnetic field. ELF-MF parameters of 7 mT, 40 Hz, 30 min/day for 10 days caused a significant increase in lipid peroxidation and insignificant increase in H(2)O(2) and free -SH groups. The same ELF-MF parameters but applied for 60 min/day caused a significant increase in free -SH groups and protein concentration in the brain homogenates indicating the adaptive mechanism. The study has shown that ELF-MF applied for 30 min/day for 10 days can affect free radical generation in the brain. Prolongation of the exposure to ELF-MF (60/min/day) caused adaptation to this field. The effect of ELF-MF irradiation on oxidative stress parameters depends on the time of animal exposure to magnetic field.

BACKGROUND: Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. MATERIAL AND METHODS: The male rats,
weight of 280-300 g, were randomly divided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. RESULTS: Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). CONCLUSIONS: Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

Stress is a state of vulnerable homeostasis that alters the physiological and behavioral responses. Stress induces oxidative damage in several organs including the brain, liver, kidney, stomach, and heart. Preliminary findings suggested that the magnetic stimulation could accelerate the healing processes and has been an effective complementary therapy in different pathologies. However, the mechanism of action of static magnetic fields (SMFs) is not well understood. In this study, we demonstrated the effects of static magnetic fields (0.8 mT) in a restraint stressed animal model, focusing on changes in different markers of oxidative damage. A significant increase in the plasma levels of nitric oxide (NO), malondialdehyde (MDA), and advanced oxidation protein products (AOPP), and a decrease in superoxide dismutase (SOD), glutathione (GSH), and glycation end products (AGEs) were observed in restraint stress model. Exposure to SMFs over 5 days (30, 60, and 240 min/day) caused a decrease in the NO, MDA, AGes, and AOPP levels; in contrast, the SOD and GSH levels increased. The response to SMFs was time-dependent. Thus, we proposed that exposure to weak-intensity SMFs could offer a complementary therapy by attenuating oxidative stress. Our results provided a new perspective in health studies, particularly in the context of oxidative stress.

Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1 mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the α-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration.

PURPOSE: we characterized the response to the extremely low frequency magnetic field (ELF-MF) in an in vitro model of familial Amyotrophic Lateral Sclerosis (fALS), carrying two mutant variants of the superoxide dismutase 1 (SOD1) gene. MATERIALS AND METHODS: SH-SY5Y human neuroblastoma cells, stably over-expressing the wild type, the G93A or the H46R mutant SOD1 cDNA, were exposed to either the ELF-MF (50 Hz, 1 mT) or the sham control field, up to 72 hours. Analysis of i) viability, proliferation and apoptosis, ii) reactive oxygen species generation, and iii) assessment of the iron metabolism, were carried out in all clones in response to the MF exposure. RESULTS: we report that 50-Hz MF exposure induces: i) no change in proliferation and viability; ii) no modulation of the intracellular superoxide and H₂O₂ levels; iii) a significant deregulation in the expression of iron-related genes IRP1, MFRN1 and TfR1, this evidence being exclusive for the SOD1^{G93A} clone and associated with a slight (P = 0.0512) difference in the total iron content. CONCLUSIONS: 50-Hz MF affects iron homeostasis in the in vitro SOD1^{G93A} ALS model.

Continuous and intermittent 50 Hz, 1.5 mT magnetic field with the exposure period of 4 h/day for 4 days was used to investigate its possible effect on adult guinea pigs. Tissues and plasma specimens were assessed by biochemical parameters. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO) levels and myeloperoxidase activity (MPO) were examined in plasma, liver and brain tissues. All parameters were determined by spectrophotometer. While intermittent magnetic field was effective on plasma lipid peroxidation, continuous magnetic field was found to be effective on plasma MPO activity and NO levels. Augmentation of lipid peroxidation was also observed in liver tissue both intermittent and continuous magnetic field exposures. These results indicate that both the intermittent and continuous magnetic field exposures affect various tissues in a distinct manner because of having different tissue antioxidant status and responses.

The exposures to extremely low frequency magnetic field (ELF-MF) in our environment have dramatically increased. Epidemiological studies suggest that there is a possible association between ELF-MF exposure and increased risks of cardiovascular disease, cancers and neurodegenerative disorders. Animal studies show that ELF-MF exposure may interfere with the activity of brain cells, generate behavioral and cognitive disturbances, and produce deficits in attention, perception and spatial learning. Although, many research efforts have been focused on the interaction between ELF-MF exposure and the central nervous system, the mechanism of interaction is still unknown. In this study, we examined the effects of ELF-MF exposure on learning in mice using two water maze tasks and on some parameters indicative of oxidative stress in the hippocampus and striatum. We found that ELF-MF exposure (1 mT, 50 Hz) induced serious oxidative stress in the hippocampus and striatum and impaired hippocampal-dependent spatial learning and striatum-dependent habit learning. This study provides evidence for the association between the impairment of learning and the oxidative stress in hippocampus and striatum induced by ELF-MF exposure.

Increasing exposure to extremely low frequency electromagnetic fields (ELF-EMF), generated by power lines and electric appliances, raises concern about potential adverse health effects of ELF-EMF. The central nervous system is expected to be particularly vulnerable to ELF-EMF as its function strongly depends on electrical excitability. We therefore investigated effects of acute (30min) and sub-chronic (48h) exposure to 50Hz ELF-EMF on naïve and chemically-stressed pheochromocytoma (PC12) cells. The latter have higher levels of iron and/or reactive oxygen species (ROS) and display increased vulnerability to environmental insults. Effects of ELF-EMF on Ca$^{2+}$-homeostasis, ROS production and membrane integrity were assessed using Fura-2 single cell fluorescence microscopy, H$_2$DCFDA and CFDA assays, respectively. Our data demonstrate that acute exposure of naïve PC12 cells to 50 Hz ELF-EMF up to 1000 μT fails to affect basal or depolarization-evoked [Ca$^{2+}$]. Moreover, sub-chronic ELF-EMF exposure up to 1000μT has no consistent effects on Ca$^{2+}$-homeostasis in naïve PC12 cells and does not affect ROS production and membrane integrity. Notably, in chemically-stressed PC12 cells both acute and sub-chronic ELF-EMF exposure also failed to exert consistent effects on Ca$^{2+}$-homeostasis, ROS production and membrane integrity. Our combined findings thus indicate that exposure to 50Hz ELF-EMF up to 1000 μT, i.e. 10,000 times above background exposure, does not induce neurotoxic effects in vitro, neither in naïve
nor in chemically-stressed PC12 cells. Though our data require confirmation, e.g. in developing neuronal cells in vitro or (developing) animals, it appears that the neurotoxic risk of ELF-EMF exposure is limited.

Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2.3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of interleukin-1beta (IL-1beta) in the culture medium. Proteoglycan synthesis and the residual PG tissue content resulted significantly higher in EMF-exposed explants than in controls, whereas no effect was observed on PG release and nitric oxide (NO) production. IL-1beta induced both a reduction in PG synthesis and an increase in PG release, related to a strong stimulation of NO production, which resulted in a net loss of tissue PG content. In IL-1beta-treated explants, EMF increased PG synthesis, whereas in spite of a slight stimulation of NO production EMF did not modify PG release. This resulted in the residual PG tissue content being maintained at the control level. In both experimental conditions, the effects of EMF were associated with an increase in lactate production. The results of our study show that EMFs are able to promote anabolic activities and PG synthesis in bovine articular cartilage explants. This effect also is maintained in the presence of IL-1beta, thus counteracting the catabolic activity of the cytokine. Altogether, these data suggest that EMF exposure exerts a chondroprotective effect on articular cartilage in vitro.

Magnetic fields (MFs) are receiving much attention in basic research due to their emerging ability to alter intracellular signaling. We show here that static MFs with intensity of 6 mT significantly alter the intracellular redox balance of U937 cells. A strong increase of reactive oxygen species (ROS) and a decrease of glutathione (GSH) intracellular levels were found after 2 h of MF exposure and maintained thereafter. We found that also other types of MFs, such as extremely-low-frequency (ELF) MFs affect intracellular GSH starting from a threshold at 0.09 mT. We previously reported that static MFs in the intensity range of 0.3-60 mT reduce apoptosis induced by damaging agents (Fanelli et al., 1998). Here, we show that ELF-MFs are also able to protect U937 from apoptosis. Interestingly, this ability is limited to the ELF intensities able to alter redox equilibrium, indicating a link between MF's antiapoptotic effect and the MF alteration of intracellular redox balance. This suggests that MF-produced redox alterations may be part of the signaling pathway leading to apoptosis antagonism. Thus, we tested whether MFs may still exert an antiapoptotic action in cells where the redox state was artificially altered in both directions, that is, by creating an oxidative (via GSH depletion with BSO) or a reducing
(with DTT) cellular environment. In both instances, MFs fail to affect apoptosis. Thus, a correct intracellular redox state is required in order for MFs to exert their antiapoptotic effect.

Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortices of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

This study was aimed to investigate the effect of aluminum and extremely low-frequency magnetic fields (ELF-MF) on oxidative stress and memory of SPF Kunming mice. Sixty male SPF Kunming mice were divided randomly into four groups: control group, ELF-MF group (2 mT, 4 h/day), load aluminum group (200 mg aluminum/kg, 0.1 ml/10 g), and ELF-MF + aluminum group (2 mT, 4 h/day, 200 mg aluminum/kg). After 8 weeks of treatment, the mice of three experiment groups (ELF-MF group, load aluminum group, and ELF-MF + aluminum group) exhibited firstly the learning memory impairment, appearing that the escaping latency to the platform was prolonged and percentage in the platform quadrant was reduced in the Morris water maze (MWM) task. Secondly are the pathologic abnormalities including neuronal cell loss and overexpression of phosphorylated tau protein in the hippocampus and cerebral cortex. On the other hand, the markers of oxidative stress were determined in mice brain and serum. The results showed a statistically significant decrease in superoxide dismutase activity and increase in the levels of malondialdehyde in the ELF-MF group.
(P < 0.05 or P < 0.01), load aluminum group (P < 0.01), and ELF-MF + aluminum group (P < 0.01). However, the treatment with ELF-MF + aluminum induced no more damage than ELF-MF and aluminum did, respectively. In conclusion, both aluminum and ELF-MF could impact on learning memory and pro-oxidative function in Kunming mice. However, there was no evidence of any association between ELF-MF exposure with aluminum loading.

PURPOSE: We aimed to investigate the effects of different apparent gravities (μ g, 1 g and 2 g) produced by large gradient high magnetic field (LGHMF) on human preosteoclast FLG29.1 cells. MATERIALS AND METHODS: FLG29.1 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. Cells were exposed to LGHMF for 72 h. On culture day 1, 2, 3, cell proliferation was detected by 3-(4,5)-dimethylthiazol-2-yl)-3,5-di-phenyltetrazoliumromide (MTT) method. On day 3, cell apoptosis and necrosis were assayed by Hoechst and propidium iodide (PI) staining. After cells were exposed to LGHMF for 72 h with the induction of 12-o-tetradecanoylphorbol 13-acetate (TPA), Tartrate-Resistant Acid Phosphatase (TRAP) positive cells and nitric oxide (NO) release were detected by TRAP staining and Griess method, respectively. Intracellular TRAP activity was measured using nitrophenylphosphate (pNPP) as the substrate. RESULTS: MTT detection revealed that compared to control, FLG 29.1 cell proliferation in the μ g and 2 g groups were promoted. However, there is no obvious difference between the 1 g and control groups. Hoechst-PI staining showed that LGHMF promoted cell apoptosis and necrosis, especially in the 2 g group. Exposure to LGHMF inhibited the NO concentration of supernatant. Both the TRAP activity and the number of TRAP positive cells were higher in cells of μ g group than those in 2 g group. In the 1 g group, they were decreased significantly compared to control. CONCLUSIONS: These findings indicate that LGHMF could directly affect human preosteoclast FLG29.1 cells survival and differentiation. High magnetic flux inhibited osteoclasts formation and differentiation while reduced apparent gravity enhanced osteoclastogenesis.

Large research activity has raised around the mechanisms of interaction between extremely low-frequency magnetic fields (ELF-MFs) and biological systems. ELF-MFs may interfere with chemical reactions involving reactive oxygen species (ROS), thus facilitating oxidative damages in living cells. Cortical neurons are particularly susceptible to oxidative stressors and are also highly dependent on the specific factors and proteins governing neuronal development, activity and survival. The aim of the present work was to investigate the effects of exposures to two different 50 Hz sinusoidal ELF-MFs intensities (0.1 and 1 mT) in maturing rat cortical
neurons' major anti-oxidative enzymatic and non-enzymatic cellular protection systems, membrane peroxidative damage, as well as growth factor, and cytokine expression pattern. Briefly, our results showed that ELF-MFs affected positively the cell viability and concomitantly reduced the levels of apoptotic death in rat neuronal primary cultures, with no significant effects on the main anti-oxidative defences. Interestingly, linear regression analysis suggested a positive correlation between reduced glutathione (GSH) and ROS levels in 1 mT MF-exposed cells. On this basis, our hypothesis is that GSH could play an important role in the antioxidant defence towards the ELF-MF-induced redox challenge. Moreover, the GSH-based cellular response was achieved together with a brain-derived neurotrophic factor over-expression as well as with the interleukin 1beta-dependent regulation of pro-survival signaling pathways after ELF-MF exposure.

PURPOSE: It is considered that exposure to static magnetic fields (SMF) may have both detrimental and therapeutic effect, but the mechanism of SMF influence on the living organisms is not well understood. Since the adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) are involved in both physiological and pathological processes, the modulation of Na⁺/K⁺-ATPase, ecto-ATPases and AChE activities, as well as oxidative stress responses were followed in synaptosomes isolated from rats after chronic exposure toward differently oriented SMF. MATERIAL AND METHODS: Wistar albino rats were randomly divided into three experimental groups (six animals per group): Up and Down group - exposed to upward and downward oriented SMF, respectively, and Control group. After 50 days, the rats were sacrificed, and synaptosomes were isolated from the whole rat brain and used for testing the enzyme activities and oxidative stress parameters. RESULTS: Chronic exposure to 1 mT SMF significantly increased ATPases, AChE activities, and malondialdehyde (MDA) level in both exposed groups, compared to control values. The significant decrease in synaptosomal catalase activity (1.48 ± 0.17 U/mg protein) induced by exposure to the downward oriented field, compared to those obtained for Control group (2.60 ± 0.29 U/mg protein), and Up group.

PURPOSE: To test whether exposure to an extremely low frequency magnetic field (60 Hz, 5 mT) affects hydrogen peroxide (H2O2)-induced cell death in human leukaemia HL-60 cells. MATERIALS AND METHODS: Cells were treated with H2O2 with or without exposure to an extremely low frequency magnetic fields. Viable cells, apoptotic and necrotic cells were determined by annexin V flow cytometry assay. The levels of apoptosis-related proteins (caspase-3, caspase-7, Bcl-2 and Bax) and poly(ADP-ribose)
polymerase were detected using Western blotting. RESULTS: Simultaneous treatment with exposure to the magnetic field and H2O2 (85 or 100 microM) for 24 h increased the number of apoptotic and necrotic cells significantly, and significantly decreased the number of viable cells compared with cells treated with H2O2 alone. The protein levels of Bax and Bcl-2 showed no differences between H2O2-treated cells and those treated with both H2O2 and an extremely low frequency magnetic field. Exposure to the magnetic field also had no effect on H2O2-induced caspase-3 activation. However, the protein levels of active caspase-7 in cells simultaneously exposed to an extremely low frequency magnetic field and H2O2 for 2 and 8 h was higher than that of H2O2 treatment alone. In addition, simultaneous exposure to an extremely low frequency magnetic field and H2O2 caused poly(ADP-ribose) polymerase cleavage and induced early inactivation at 2 h, while H2O2 treatment alone did not produce this effect until 4 h. CONCLUSIONS: The data suggest that although the magnetic field itself cannot induce apoptosis and necrosis, it exerts a promoting effect on H2O2-induced cell death, and it demonstrates that caspase-7 as well as poly(ADP-ribose) polymerase might be involved in this process.

In recent years, extremely low-frequency electromagnetic field (ELF-EMF) has received considerable attention for its potential biological effects. Numerous studies have shown the role of ELF-EMF in behaviour modulation. The aim of this study was to investigate the effect of short-term ELF-EMF (50 Hz) in the development of anxiety-like behaviour in rats through change hypothalamic oxidative stress and NO. Ten adult male rats (Wistar albino) were divided in two groups: control group-without exposure to ELF-EMF and experimental group-exposed to ELF-EMF during 7 days. After the exposure, time open field test and elevated plus maze were used to evaluate the anxiety-like behaviour of rats. Upon completion of the behavioural tests, concentrations of superoxide anion (O2--), nitrite (NO\textsubscript{2}--), as an indicator of NO) and peroxynitrite (ONOO--) were determined in the hypothalamus of the animals. Obtained results show that ELF-EMF both induces anxiety-like behaviour and increases concentrations of O2-- and NO, whereas it did not effect on ONOO-- concentration in hypothalamus of rats. In conclusion, the development of anxiety-like behaviour is mediated by oxidative stress and increased NO concentration in hypothalamus of rats exposed to ELF-EMF during 7 days.

The remarkable phenomenon of magnetoreception in migratory birds and other organisms has fascinated biologists for decades. Much evidence has accumulated to suggest that birds sense the magnetic field of the Earth using photochemical transformations in cryptochrome flavoproteins. In the last 5 years this highly interdisciplinary field has seen advances in structural biology, biophysics,
spin chemistry, and genetic studies in model organisms. We review these developments and consider how this chemical signal can be integrated into the cellular response.

High static magnetic fields (HiSMFs) are usually defined as those SMFs with intensities ≥1 T. Although many studies have indicated that SMFs have positive effects on bone tissue, there were limited studies that investigate the effects of cells, including osteoclasts, to illustrate the effect of HiSMF on osteoclast differentiation, and whether iron involve in the altered osteoclast formation and resorption ability under HiSMF. 16 T HiSMF generated from a superconducting magnet was used. Osteoclastogenesis, bone resorption, acting ring formation, messenger ribonucleic acid expression, and protein expression were determined by tartrate-resistant acid phosphatase staining, pits formation assay, rhodamine-conjugated phalloidine staining, quantitative real-time polymerase chain reaction, and western blot, respectively. The changes induced by HiSMF in the level of iron and the concentration of mitochondrial protein, adenosine triphosphate, reactive oxygen species, malonaldehyde, and glutathione were examined by atomic absorption spectrometry and corresponding commercial kits, respectively. The results showed that HiSMF significantly inhibited osteoclastic formation and resorption ability and reduced cellular iron content during osteoclast differentiation. Mitochondrial concentration and oxidative stress levels in osteoclasts were decreased under HiSMF. Mechanistically, HiSMF markedly blocked the expression of osteoclast-associated transcription factors and osteoclast marker genes and inhibited iron absorption and iron storage-related protein expression. These findings demonstrated that the effect of HiSMF on iron metabolism of osteoclasts was involved in the inhibition of HiSMF on osteoclast differentiation.

Technological advancement has increasingly exposed humans to magnetic fields (MFs). However, more insights are necessary into the potential toxicity of MF exposure as a result of genetic variations related to oxidative metabolism. Therefore, the following study has assessed an in vitro cytotoxic effect of static magnetic field (SMF) (5 mT) on cells with Val16Ala polymorphism (AA, VA, and VV)
in the manganese superoxide dismutase gene. Homozygous Val16Ala-superoxide dismutase 2 (SOD2) genotypes present oxidative imbalance that is associated with risk to several chronic degenerative diseases (VV produces less efficient and AA more efficient SOD2 enzyme). Blood samples from healthy adult subject carriers with different Val16Ala-SOD2 genotypes were obtained and exposed to MF at different times (0, 1, 3, 6 h). The cytotoxic effect as well as oxidative stress was evaluated after incubation of 24 h at 37 °C. In addition, apoptosis induction has been analyzed by flow cytometry as well as Bcl-2-associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and caspases 8 and 3 gene expression. SMF cytotoxic effect has been observed in AA cells at all times of exposure, whereas AV cells presented higher mortality only after 6 h of exposure at SMF. Higher apoptosis induction has been observed in AA cells when compared to VV and AV cells. These results suggest a toxicogenetic SMF effect related to an imbalance in SOD2 activity.

The present study investigated the effects of lotus seedpod procyanidins (LSPCs) administered by oral gavage on the cognitive deficits and oxidative damage of mice at extremely low frequency electromagnetic field (ELF-EMF) exposure (50 Hz, 8 mT, 28 days). The results showed that 90 mg kg\(^{-1}\) LSPCs treatment significantly increased body weight compared with the ELF-EMF group at ELF-EMF exposure and effectively maintained liver index, thymus index, kidney index and spleen index close to normal. A water maze test indicated that learning and memory abilities of the ELF-EMF group deteriorated significantly with ELF-EMF exposure when compared with the control group, but the ELF-EMF + LSPCs90 group had remarkably improved learning and memory abilities compared with the ELF-EMF group. Malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and nitric oxide synthase (NOS) mostly exhibited significant increases, while the activities of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) decreased significantly under ELF-EMF exposure in the ELF-EMF group. LSPCs (especially 60, 90 mg kg\(^{-1}\)) administration decreased MDA, ROS, NO content and lowered NOS activity in LSPCs treatment groups. Furthermore, LSPCs (60, 90 mg kg\(^{-1}\)) treatment significantly augmented GPx, CAT, SOD activity in the hippocampus and serum. Pathological observation showed that number of pyramidal cells of the CA1 and CA3 regions of the hippocampus of the LSPCs treatment groups was significantly greater than the ELF-EMF group. All the data suggested that the LSPCs can effectively prevent learning and memory damage and oxidative damage caused by the ELF-EMF, most likely through the ability of LSPCs to scavenge oxygen free radicals and to stimulate antioxidant enzyme activity.
Extremely low-frequency electromagnetic fields (ELF-EMF) and radiofrequency electromagnetic fields (RF-EMF) have been considered to be possibly carcinogenic to humans. However, their genotoxic effects remain controversial. To make experiments controllable and results comparable, we standardized exposure conditions and explored the potential genotoxicity of 50 Hz ELF-EMF and 1800 MHz RF-EMF. A mouse spermatocyte-derived GC-2 cell line was intermittently (5 min on and 10 min off) exposed to 50 Hz ELF-EMF at an intensity of 1, 2 or 3 mT or to RF-EMF in GSM-Talk mode at the specific absorption rates (SAR) of 1, 2 or 4 W/kg. After exposure for 24 h, we found that neither ELF-EMF nor RF-EMF affected cell viability using Cell Counting Kit-8. Through the use of an alkaline comet assay and immunofluorescence against γ-H2AX foci, we found that ELF-EMF exposure resulted in a significant increase of DNA strand breaks at 3 mT, whereas RF-EMF exposure had insufficient energy to induce such effects. Using a formamidopyrimidine DNA glycosylase (FPG)-modified alkaline comet assay, we observed that RF-EMF exposure significantly induced oxidative DNA base damage at a SAR value of 4 W/kg, whereas ELF-EMF exposure did not. Our results suggest that both ELF-EMF and RF-EMF under the same experimental conditions may produce genotoxicity at relative high intensities, but they create different patterns of DNA damage. Therefore, the potential mechanisms underlying the genotoxicity of different frequency electromagnetic fields may be different.

Purpose: The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods: HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results: OGD caused significant HMO6 cell death as well as elevation of intracellular Ca2+ and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca2+ and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions: 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca2+ and ROS levels, and xanthine oxidase is one of the main mediators involved in
OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

Recently, we identified a specific extremely low-frequency pulsed electromagnetic field (ELF-PEMF) that supports human osteoblast (hOBs) function in an ERK1/2-dependent manner, suggesting reactive oxygen species (ROS) being key regulators in this process. Thus, this study aimed at investigating how ELF-PEMF exposure can modulate hOBs function via ROS. Our results show that single exposure to ELF-PEMF induced ROS production in hOBs, without reducing intracellular glutathione. Repetitive exposure (>3) to ELF-PEMF however reduced ROS-levels, suggesting alterations in the cells antioxidative stress response. The main ROS induced by ELF-PEMF were •O$_2^-$ and H$_2$O$_2$, therefore expression/activity of antioxidative enzymes related to these ROS were further investigated. ELF-PEMF exposure induced expression of GPX3, SOD2, CAT and GSR on mRNA, protein and enzyme activity level. Scavenging •O$_2^-$ and H$_2$O$_2$ diminished the ELF-PEMF effect on hOBs function (AP activity and mineralization). Challenging the hOBs with low amounts of H$_2$O$_2$ on the other hand improved hOBs function. In summary, our data show that ELF-PEMF treatment favors differentiation of hOBs by producing non-toxic amounts of ROS, which induces antioxidative defense mechanisms in these cells. Thus, ELF-PEMF treatment might represent an interesting adjunct to conventional therapy supporting bone formation under oxidative stress conditions, e.g. during fracture healing.

We investigated the effect of extremely low-frequency electromagnetic field (ELF-EMF) with pulse trains exposure on lipid peroxidation, and, hence, oxidative stress in the rat liver tissue. The parameters that we measured were the levels of plasma alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase as well as plasma albumin, bilirubin, and total protein levels in 30 adult male Wistar rats exposed to ELF. We also determined the percentage of apoptotic and necrotic cells of the kidney extracts from the animals by flow cytometry method. Apoptotic cell death was further characterized by monitoring DNA degradation using gel electrophoresis. The results showed an increase in the levels of oxidative stress indicators, and the flow cytometric data suggested a possible relationship between the exposure to magnetic field and the cell death. We showed significantly lower necrotic cell
percentages in experimental animals compared to either unexposed or sham control groups. However, DNA ladder analyses did not differentiate between the groups. Our results were discussed in relation to the response of biological systems to EMF.

Thirty-two adult Wistar-Albino female and male rats were used to investigate the long-term (45 days) effects of extremely low frequency magnetic field (ELF-MF; 50Hz, 1mT, 4h/day) exposure on oxidative/nitrosative stress in liver tissues of rats. The rats were divided randomly into four groups: female control (FC; n = 8) and MF-exposed female rats (F-MF; n = 8); male control (MC; n = 8) and MF-exposed male rats (M-MF; n = 8). Liver tissue from each animal was harvested and utilized for malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) detection. MDA levels were measured by MDA-TBA method, while the 3-NT levels were determined by the HPLC-UV system. There were no significant differences between the MDA levels of the control (FC; MC) and MF-exposed (F-MF; M-MF) rats (P > 0.05). In the F-MF rats, 3-NT levels were significantly increased when compared to those of the FC rats (P < 0.05). There were no significant differences between the 3-NT levels of the MC and M-MF rats. In conclusion, our study suggests that the long-term ELF-MF exposure may enhance the oxidative/nitrosative stress in liver tissue of the female rats and could have a deteriorative effect on cellular proteins rather than lipids by enhancing 3-NT formation.

BACKGROUND/AIMS: Life on Earth is constantly exposed to electromagnetic fields (EMFs) and the effects induced by EMFs on biological systems have been extensively studied producing different and sometimes contradictory results. Extremely low-frequency electromagnetic fields (ELF-EMFs) have shown to play a role in regulating cell proliferation and differentiation, although how EMFs influence these processes remains unclear. Human acute promyelocytic leukemia (APL) cells are characterized by the arrest of differentiation at the promyelocytic stage due to epigenetic perturbations induced by PML/RARα fusion protein (Promyelocytic Leukemia protein - PML/Retinoic Acid Receptor alpha - RARα). Therapeutic administration of all-trans retinoic acid (ATRA) re-establishes the leukemogenic mechanism re-inducing the normal differentiation processes. METHODS: We studied the effects of ELF-EMFs (50 Hz, 2 mT) on the ATRA-mediated granulocytic differentiation process of APL NB4 cells (a cell line established from the bone marrow of a patient affected by the acute promyelocytic leukemia) by monitoring cellular proliferation and morphology,
nitrob lue tetrazolium (NBT) reduction and the expression of differentiation surface markers. Finally, we investigated mechanisms focusing on reactive oxygen species (ROS) generation and related molecular pathways. RESULTS: ELF-EMF exposure decreases cellular proliferation potential and helps ATRA-treated NB4 cells to mature. Furthermore, the analysis of ROS production and the consequent extracellular signal regulated kinases (ERK1/2) phosphorylation suggest that a changed intracellular oxidative balance may influence the biological effects of ELF-EMFs. CONCLUSIONS: These results indicate that the exposure to ELF-EMF promotes ATRA-induced granulocytic differentiation of APL cells.

The current study was designed to establish whether extremely low-frequency electromagnetic fields might affect neuronal homeostasis through redox-sensitive mechanisms. To this end, intracellular reactive oxygen species production, antioxidant and glutathione-based detoxifying capability and genomic integrity after extremely low-frequency electromagnetic fields exposure were investigated. Moreover, we also studied potential extremely low-frequency electromagnetic fields-dependent changes in the proliferative and differentiative cellular status. Results seem to support redox-mediated extremely low-frequency electromagnetic fields effects on biological models as, although no major oxidative damage was detected, after exposure we observed a positive modulation of antioxidant enzymatic expression, as well as a significant increase in reduced glutathione level, indicating a shift of cellular environment towards a more reduced state. In addition, extremely low-frequency electromagnetic fields treatment induced a more differentiated phenotype as well as an increased expression in peroxisome proliferators-activated receptor isotype beta, a class of transcription factors related to neuronal differentiation and cellular stress response. As second point, to deepen how extremely low-frequency electromagnetic fields treatment could affect neuroblastoma cell antioxidant capacity, we examined the extremely low-frequency electromagnetic fields-dependent modifications of cell susceptibility to pro-oxidants. Results clearly showed that 50 Hz extremely low-frequency electromagnetic fields exposure reduces cell tolerance towards oxidative attacks.

Several studies suggest that extremely low-frequency magnetic fields (ELF-MFs) may enhance the free radical endogenous production. It is also well known that one of the unavoidable consequences of ageing is an overall oxidative stress-based decline in
several physiological functions and in the general resistance to stressors. On the basis of these assumptions, the aim of this study was to establish whether the ageing process can increase susceptibility towards widely present ELF-MF-mediated pro-oxidative challenges. To this end, female Sprague-Dawley rats were continuously exposed to a sinusoidal 50 Hz, 0.1 mT magnetic field for 10 days. Treatment-induced changes in the major antioxidant protection systems and in the neurotrophic support were investigated, as a function of the age of the subjects. All analyses were performed in brain cortices, due to the high susceptibility of neuronal cells to oxidative injury. Our results indicated that ELF-MF exposure significantly affects anti-oxidative capability, both in young and aged animals, although in opposite ways. Indeed, exposed young individuals enhanced their neurotrophic signalling and anti-oxidative enzymatic defence against a possible ELF-MF-mediated increase in oxygen radical species. In contrast, aged subjects were not capable of increasing their defences in response to ELF-MF treatment but, on the contrary, they underwent a significant decrease in the major antioxidant enzymatic activities. In conclusion, our data seem to suggest that the exposure to ELF-MFs may act as a risk factor for the occurrence of oxidative stress-based nervous system pathologies associated with ageing.

Purpose: The redox milieu, together with reactive oxygen species (ROS) accumulation, may play a role in mediating some biological effects of extremely-low-frequency electromagnetic fields (ELF-EMF). Some of us have recently reported that a pulsed EMF (PEMF) improves the antioxidant response of a drug-sensitive human neuroblastoma SH-SY5Y cell line to pro-oxidants. Since drug resistance may affect cell sensitivity to redox-based treatments, we wanted to verify whether drug-resistant human neuroblastoma SK-N-BE(2) cells respond to a PEMF in a similar fashion. Materials and methods: SK-N-BE(2) cells were exposed to repeated 2 mT, 75 Hz PEMF (15 min each, repeated 3 times over 5 days), and ROS production, Mn-dependent superoxide dismutase (MnSOD)-based antioxidant protection and viability were assessed after 10 min or 30 min 1 mM hydrogen peroxide. Sham controls were kept at the same time in identical cell culture incubators. Results: The PEMF increased the MnSOD-based antioxidant protection and reduced the ROS production in response to a pro-oxidant challenge. Conclusions: Our work might lay foundation for the development of non-invasive PEMF-based approaches aimed at elevating endogenous antioxidant properties in cellular or tissue models.

In accordance with the classification of the International Agency for Research on Cancer, extremely low frequency magnetic fields (ELF-MF) are suspected to promote malignant progression by providing survival advantage to cancer cells through the activation of critical cytoprotective pathways. Among these, the major antioxidative and detoxification defence systems might be targeted by ELF-MF by conferring cells significant resistance against clinically-relevant cytotoxic agents. We investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field was supported by improved defence towards reactive oxygen species (ROS) and xenobiotics, as well as by reduced vulnerability against both H₂O₂ and anti-tumor ROS-generating drug doxorubicin. ELF-MF induced a proliferative and survival advantage by activating key redox-responsive antioxidative and detoxification cytoprotective pathways that are associated with a more aggressive behavior of neuroblastoma cells. This was coupled with the upregulation of the major sirtuins, as well as with increased signaling activity of the erythroid 2-related nuclear transcription factor 2 (NRF2). Interestingly, we also showed that the exposure to 50 Hz MF as low as 100 µT may still be able to alter behavior and responses of cancer cells to clinically-relevant drugs.

Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as "possible carcinogenic." Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.

Purpose To investigate the biological effects of a 50-Hz magnetic field (MF) on mitochondrial permeability. Materials and methods Human amniotic epithelial cells were exposed to MF (50 Hz, 0.4 mT) for different durations. Mitochondrial permeability, mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt-c) release and the related mechanisms were explored. Results Exposure to the MF at 0.4 mT for 60 min transiently induced mitochondrial permeability transition (MPT) and Cyt-c release, although there was no significant effect on mitochondrial membrane potential (ΔΨm). Other than decreasing the total Bcl-2 associated X protein (Bax) level, MF exposure did not significantly affect the levels of Bax and B-cell lymphoma-2 (Bcl-2) in mitochondria. In addition, cells exposed to the MF showed increased intracellular reactive oxidative species (ROS) levels and glycogen synthase kinase-3β (GSK-3β) dephosphorylation at 9 serine residue (Ser9). Moreover, the MF-induced MPT was attenuated by ROS scavenger (N-acetyl-L-cysteine, NAC) or GSK-3β inhibitor, and NAC pretreatment prevented GSK-3β dephosphorylation (Ser9) caused by MF exposure. Conclusion MPT induced by MF exposure was mediated through the ROS/GSK-3β signaling pathway.

PURPOSE: A 50-Hz magnetic field (MF) was found to induce epidermal growth factor receptor (EGFR) clustering in our previous study. The aim of this work was to investigate the molecular mechanisms that mediated MF-induced EGFR clustering. MATERIALS AND METHODS: Human amniotic epithelial (FL) cells were exposed to a 50-Hz MF. Total reactive oxygen species (ROS), cytoplasmic and mitochondrial superoxide production were detected by DCFH-DA, DHE and MitoSOX, respectively. EGFR clustering was analyzed using confocal microscopy after indirect immunofluorescence staining. RESULTS: Results showed that exposing FL cells to MF at intensity higher than 0.2 mT for 15 min enhanced total ROS production. Additionally, enhanced total ROS and cytoplasmic superoxide production were observed after exposing cells to MF at 0.4 mT for 5, 15, or 30 min, while mitochondrial superoxide production for 15 or 30 min. Pretreatment with Nox inhibitor, DPI, effectively inhibited MF-induced cytoplasmic superoxide production and subsequent EGFR clustering while mitochondrial superoxide production was not affected. CONCLUSIONS: Nox-produced superoxide mediated a 50-Hz magnetic field-induced EGFR clustering.

BACKGROUND/AIMS: Our previous study showed that exposure to a 50-Hz magnetic field (MF) could induce transient mitochondrial permeability transition (MPT) in cells. In the present study, the aim was to explore the possible biological implications of MF-induced transient MPT. MATERIALS AND METHODS: Human amniotic (FL) cells were exposed to MF for different durations or intensities followed by incubation with staurosporine for 4 h. After MF exposure, cell early apoptosis, cell viability,
mitochondrial ROS and the level of phosphorylated Akt were assessed. After MF exposure followed by incubation with staurosporine, cell early apoptosis was assessed. RESULTS: MF exposure had a protective effect against early apoptosis induced by staurosporine, which could be abolished by MPT inhibitors, although MF exposure alone had no significant effect on early apoptosis or viability of cells. In addition, exposing cells to MF increased the level of mitochondrial ROS which were released into cytoplasm through mitochondrial permeability transition pores (mPTP), and induced ROS-dependent phosphorylation of Akt. Furthermore, the anti-apoptotic effect of MF exposure was completely eliminated when Akt was inhibited. CONCLUSIONS: The present study indicated a possibility that mitochondrial ROS release through mPTP and subsequent Akt activation were necessary for the anti-apoptotic effect of MF.

Exposure to electromagnetic fields (EMFs) alters melatonin, behavior, growth, and reproduction of captive American kestrels (Falco sparverius), particularly of males. EMF exposure is a "possible" human carcinogen and associated with some neurodegenerative diseases. Oxidative stress contributes to cancer, neurodegenerative diseases, and immune disorders. We tested whether EMF exposure elicits an avian immune response and alters oxidative stress levels. Captive male kestrels were bred under control or EMF conditions equivalent to those experienced by wild kestrels. Short-term EMF exposure (one breeding season) suppressed plasma total proteins, hematocrits, and carotenoids in the first half of the breeding season. It also suppressed erythrocyte cells and lymphocyte proportions, but elevated granulosa proportions at the end of the breeding season. Long-term EMF exposure (two breeding seasons) suppressed hematocrits in the first half of the reproductive period too. Results indicate that only short-term EMF birds experience an immune response, particularly during the early half of the breeding season. The elevation of granulocytes, and the suppression of carotenoids, total proteins, and previously melatonin in the same kestrels, signifies that the short-term EMF male kestrels had higher levels of oxidative stress, due to an immune response and/or EMF exposure. Long-term EMF exposure may be linked to higher levels of oxidative stress through EMF exposure only.

The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2-0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed at the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated
whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate the a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents.

A potential treatment modality for joint pain due to cartilage degradation is electromagnetic fields (EMF) that can be delivered, noninvasively, to chondrocytes buried within cartilage. A pulsed EMF in clinical use for recalcitrant bone fracture healing has been modified to be delivered as a pulsed electric field (PEF) through capacitive coupling. It was the objective of this study to determine whether the PEF signal could have a direct effect on chondrocytes in vitro. This study shows that a 30-min PEF treatment can increase DNA content of chondrocyte monolayer by approximately 150% at 72 h poststimulus. Studies intended to explore the biological mechanism showed this PEF signal increased nitric oxide measured in culture medium and cGMP measured in cell extract within the 30-min exposure period. Increasing calcium in the culture media or adding the calcium ionophore A23187, without PEF treatment, also significantly increased short-term nitric oxide production. The inhibitor W7, which blocks calcium/calmodulin, prevented the PEF-stimulated increase in both nitric oxide and cGMP. The inhibitor L-NAME, which blocks nitric oxide synthase, prevented the PEF-stimulated increase in nitric oxide, cGMP, and DNA content. An inhibitor of guanylate cyclase (LY83583) blocked the PEF-stimulated increase in cGMP and DNA content. A nitric oxide donor, when present for only 30 min, increased DNA content 72 h later. Taken together, these results suggest the transduction pathway for PEF-stimulated chondrocyte proliferation involves nitric oxide and the production of nitric oxide may be the result of a cascade that involves calcium, calmodulin, and cGMP production.

The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed
cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF).

Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.

The interaction of extremely low frequency (ELF) magnetic fields (MF) with cells can induce alterations in various cell physiological processes. Here, we present evidence that exposure of mouse macrophages to 50 Hz, 1.0 mT MF lead to immune cell activation seen as increased production of reactive oxygen species (ROS), and also to modulation on the expression level of important proteins acting in redox regulatory processes and thus explaining the noted changes in ROS levels seen after exposure. The MF exposure caused slight and transient decreases after short term exposures (2h or less) of clathrin, adaptin, PI3-kinase, protein kinase B (PKB) and PP2A, whereas longer exposures had no effect. The levels of the NAD(P)H oxidase subunit gp91phox oscillated between increased and normal levels compared to controls. The stress proteins Hsp70 and Hsp110 exhibited increased levels at certain time points, but not generally. The effects of MF on protein levels are different from the effects exerted by 12-O-tetradecanolyphobol-13-acetate (TPA) or LPS, although all three factors cause increases in ROS release. This suggests that ELF MF interacts with other cellular constituents than these chemicals, although induced pathways at least partially converge.

It is by now accepted that extremely low frequency electromagnetic fields ELF-EMF (0-300 Hz) affect biological systems although the mechanism has not been elucidated yet. In this study the effect of ELFEMF on the number of apoptotic cells of K562 human leukemia cell line induced or not with oxidative stress and the correlation with heat-shock protein 70 (hsp70) levels was investigated. One sample was treated with H 2 O 2 while the other was left untreated. ELF-EMF (1 mT, 50 Hz) was applied for 3 hours. ELF-EMF alone caused a decrease in the number of apoptotic cells and a slight increase in viability. However, it increased the number of
apoptotic cells. In cells treated with H 2 O 2, hsp70 and reactive oxygen species (ROS) levels were increased by ELF-EMF. These results show that the effect of ELF-EMF on biological systems depends on the status of the cell: while in cells not exposed to oxidative stress it is able to decrease the number of apoptotic cells by inducing an increase in hsp levels, it increases the number of apoptotic cells in oxidative stress-induced cells.

In the present study, we evaluate the effect of the co-exposure to static magnetic field (SMF) and selenium (Se) on the antioxidant vitamins A and E levels and some other parameters of oxidative stress in rat. Sub-acute exposure of male adult rats to a uniform SMF (128 mT, 1 h/day during 5 consecutive days) increased plasma activity of glutathione peroxidase (+35%) but decreased α-tocopherol (-67%) and retinol levels (-41%). SMF exposure failed to alter the plasmatic thiobarbituric acid-reactive species (TBARs), total thiol groups and selenium concentrations. Sub-chronic administration of Se (Na(2)SeO(3), 0.2 mg/L, for 30 consecutive days, per os) ameliorated the antioxidant capacities in SMF-treated rats. Our investigation demonstrated that sub-acute exposure to SMF induced oxidative stress, which may be prevented by a pretreatment with selenium.

The aim of this study was to investigate the effect of selenium supplementation on the antioxidant enzymatic system (such as GPx, GR and SOD), GSH and selenium level in liver, kidney, muscle and brain of static magnetic field (SMF) exposed rats. Male adult rats were divided into control rats (n=6), SMF-exposed rats (128 mT; 1 h/day for 5 days), selenium-treated rats (Na(2)SeO(3), 0.2mg/L, in drinking water for 4 weeks) and co-exposed rats (selenium for 4 weeks and SMF during the last 5 consecutive days). Sub-acute exposure to SMF induces a decrease of selenium levels in kidney, muscle and brain. Our results also revealed a decrease of GPx activities in kidney and muscle. By contrast, SMF exposure increased total GSH levels and total SOD activities in liver, while glutathione reductase activity is unaffected. Selenium supplementation in SMF-exposed rats restored selenium levels in kidney, muscle and brain and elevated the activities of GPx in kidney and muscle to those of control group. In the liver, selenium supplementation failed to bring down the elevated levels of total GSH and SOD activity. Our investigations suggested that sub-acute exposure to SMF altered the antioxidant response by decreasing the level of total selenium in kidney, muscle and brain. Interestingly, selenium supplementation ameliorates antioxidant capacity in rat tissues exposed to SMF.

The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited.

In the present study, we investigate the effects of a possible protective role of vitamin E (vit E) or selenium (Se) on glucose metabolism disruption induced by static magnetic field (SMF) in rats. Rats have been exposed to SMF (128 mT, 1 h/day during 5 days). Our results showed that SMF failed to alter body weight and relative liver weight. Our data demonstrated that exposure to SMF increased (+21 %) blood glucose level and caused a decrease (-15 %) in liver glycogen content. Moreover, the same treatment induced a reduction of pancreatic islet area. Interestingly, supplementation with vit E (DL α-tocopherol acetate, 150 mg/kg per os during 5 days) prevented alterations induced by SMF on glucose metabolism and liver glycogen content, whereas supplementation with Se (Na2SeO3, 0.20 mg/l, in drinking water for 4 weeks) restored only hepatic glycogen contents. By contrast, both vit E and Se failed to correct the area of pancreatic islets.

In the present study, we investigated the implication of oxidative stress and apoptosis under static magnetic field (SMF) in the brain and liver. Moreover, we estimated the protective role of selenium and vitamin E in rat tissues against disorders induced by SMF.
Exposure of rats to SMF (128 mT, 1 h/day during five consecutive days) increased the activity of catalase (CAT) (+24 %) in the liver but not in the brain. By contrast, the same treatment failed to alter malondialdehyde (MDA) concentration in the brain and liver. Exposure to SMF also induced hepatocyte apoptosis through a caspase-independent pathway involving mitochondrial apoptosis-inducing factor (AIF) but not in the brain. Selenium and vitamin E supplementations to SMF-exposed rats restored liver CAT activity but failed to minimize liver apoptosis.

Static magnetic fields (SMFs) effect observed with radical pair recombination is one of the well-known mechanisms by which SMFs interact with biological systems. Our aim was to study whether SMF induces oxidative stress and apoptosis in rat tissues and to evaluate the possible protector effect of selenium (Se) and vitamin E (vit E) supplementations. Rats were randomly divided into control, SMF-exposed, Se-treated, vit E-treated, SMF exposed rats and co-treated with Se, and SMF exposed rats and co-treated with vit E. After animal sacrifice, catalase (CAT) activity and malondialdehyde (MDA) concentration were measured and apoptosis inducing factor (AIF) immunohistochemical labeling was performed in kidney and muscle. Exposure of rats to SMF (128 mT, 1 h/day for 5 days) increased the MDA concentrations (+25%) and CAT activities (+34%) in kidney but not in muscle. By contrast, the same treatment failed to induce a caspase-independent pathway apoptosis in both tissues. Interestingly, Se pre-treatment inhibited the increase of MDA concentrations and CAT activities in kidney in SMF-exposed rats. However, vit E administration corrected only MDA levels in rat kidney. In conclusion, exposure to SMF induced oxidative stress in kidney that can be prevented by treatment with Se or vit E.

The possible genotoxicity of extremely low frequency magnetic field (ELF-MF) exposure is still a controversial topic. The most of the reported data suggests that it alone does not affect DNA integrity, but several recent reports have suggested that sinusoidal ELF-MF may increase the effect of known genotoxic agents. Only a few studies deal with non sinusoidal ELF-MF, including pulsed magnetic field (PMF), which are produced by several devices. The aim of this study is to investigate whether PMF exposure can interfere with DNA damage and repair in the presence of a genotoxic oxidative agent in neuronal type cells. To this purpose gamma-H2AX foci formation, which is a sensitive marker of DNA double strand breaks (DSB), was investigated at different points of time (1, 24, 48, 72h) after the H2O2 treatment (300μM for 1h) under PMF exposure (1mT, 50Hz) in human neuroblastoma BE(2)C cells. Moreover,
cytotoxicity evaluation, by MTT assay and cell cycle analysis, was performed at various points of time after the treatment. Taken together, results suggest that PMF exposure does not interfere with genotoxicity and cytotoxicity induced by oxidative stress.

Extremely low frequency magnetic fields (ELF-MF) have been classified as "possibly carcinogenic", but their genotoxic effects are still unclear. Recent findings indicate that epigenetic mechanisms contribute to the genome dysfunction and it is well known that they are affected by environmental factors. To our knowledge, to date the question of whether exposure to ELF-MF can influence epigenetic modifications has been poorly addressed. In this paper, we investigated whether exposure to ELF-MF alone and in combination with oxidative stress (OS) can affect DNA methylation, which is one of the most often studied epigenetic modification. To this end, we analyzed the DNA methylation levels of the 5'untranslated region (5'UTR) of long interspersed nuclear element-1s (LINE-1 or L1), which are commonly used to evaluate the global genome methylation level. Human neural cells (BE(2)C) were exposed for 24 and 48 h to extremely low frequency pulsed magnetic field (PMF; 50 Hz, 1 mT) in combination with OS. The methylation levels of CpGs located in L1 5'UTR region were measured by MassARRAY EpiTYPER. The results indicate that exposures to the single agents PMF and OS induced weak decreases and increases of DNA methylation levels at different CpGs. However, the combined exposure to PMF and OS lead to significant decrease of DNA methylation levels at different CpG sites. Most of the changes were transient, suggesting that cells can restore homeostatic DNA methylation patterns. The results are discussed and future research directions outlined.

The aim of this study was to evaluate the activity of the antioxidant enzymes mitochondrial and cytosolic superoxide dismutase (EC 1.15.1.1), glutathione peroxidase (POX, EC 1.11.1.9) and glutathione S-transferase (EC 3.1.2.7), as well as the concentration of malone dialdehyde (MDA), as an indicator of lipid peroxidation rate in the liver tissue homogenates and blood serum of male rats exposed to extremely low-frequency magnetic field (ELF-MF) in order to improve the healing process of an experimental cut wound on the back of each animal. The exposure to ELF-MF with frequency 40 Hz and magnetic flux density 10 mT induced an increase in POX serum activity and a decrease in MDA contents in the liver tissue, which suggests the inhibition of phospholipid peroxidation and subsequent stabilization of cellular membranes, as a result of ELF-MF action. Based on the results obtained, it seems that
ELF-MF could be a useful supplement in the complex treatment of prolonged wound healing, due to the activation of endogenous enzymatic antioxidant system.

Results of research assessing the biological impact of static magnetic fields are controversial. So far, they have not provided a clear answer to their influence on cell functioning. Since the use of permanent magnets both in everyday life and in industry becomes more and more widespread, the investigations are continued in order to explain these controversies and to evaluate positive applications. The goal of current work was to assess the impact of static magnetic field of different intensities on redox homeostasis in cultures of fibroblasts. The use of permanent magnets allowed avoiding the thermal effects which are present in electromagnets. During the research we used 6 chambers, designed exclusively by us, with different values of field flux density (varying from 0.1 to 0.7 T). We have noted the decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx). The static magnetic fields did not modify the energy state of fibroblasts- adenosine triphosphate (ATP) concentration was stable, as well as the generation of malondialdehyde (MDA)-which is a marker of oxidative stress. Results of research suggest that static magnetic fields generated by permanent magnets do not cause oxidative stress in investigated fibroblasts and that they may show slight antioxidizing activity.

The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited.
The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.

Increasing production of free radicals in organisms is one of the putative mechanisms by which a extremely low frequency magnetic field (ELF-MF) may affect biological systems. The present study was designated to assess if ELF-MF applied in the magnetotherapy, affects generation of reactive oxygen species (ROS) in heart tissue and antioxidant capacity of plasma according to its working time. The experiments were performed on 3 groups of animals: group I - control; group II - exposed to 40 Hz, 7 mT, 30 min/day for 14 days (this field is commonly applied in magnetotherapy); group III - exposed to 40 Hz, 7 mT, 60 min/day for 14 days. Control rats were housed in a separate room without exposure to ELF-MF. Immediately after the last exposure, blood was taken from the tail vein and hearts were removed under anesthesia. The effect of the exposure to ELF-MF on oxidative stress was assessed on the basis of the measurements of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H(2)O(2)), total free sulphydryl groups (-SH groups) and reduced glutathione (GSH) concentrations in heart homogenates. The total antioxidant capacity of plasma was measured using ferric reducing ability method (FRAP). Exposure to ELF-MF (40 Hz, 7 mT, 30 min/day for 2 weeks) did not significantly alter...
tissue TBARS, H(2)O(2), total free -SH groups, reduced glutathione (GSH) and total antioxidant capacity of plasma. By contrast, ELF-MF with the same frequency and induction but used for 60 min/day for 14 days caused significant increase in TBARS and H(2)O(2) concentration (P<0.01) and decrease in the concentration of GSH (P<0.05) and total free -SH groups in heart homogenates. Moreover, exposure of rats to ELF-MF (40 Hz, 7 mT, 60 min/day for 2 weeks) resulted in the decrease of plasma antioxidant capacity. Our results indicate that effects of ELF-MF on ROS generation in the heart tissue and antioxidant capacity of plasma depend on its working time.

PURPOSE: To investigate the effects of 12 kV/m electric (E) field sourced by power lines on oxidative and nitrosative stress, and antioxidant status. Furthermore, the study aimed to examine the protective effects of N-Acetyl-L-cysteine (NAC) and epigallocatechin-gallate (EGCG) in the liver tissues of guinea pigs against the possible detriments of electromagnetic field exposure. MATERIALS AND METHODS: Guinea pigs were exposed to 50 Hz 12 kV/m E-field. NAC and EGCG were administered intraperitoneally. Malondialdehyde (MDA), a product of lipid peroxidation (LPO), and nitric oxide derivatives (nitrate (NO(3)), nitrite (NO(2)), total level of nitric oxide (NO(x))) were estimated as biomarkers of oxidative and nitrosative stress, respectively. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) were evaluated as endogenous antioxidant enzymes in liver tissues of the guinea pigs. RESULTS: The results of our study indicated a significant increase in the levels of oxidant products (MDA, NO(3), NO(2), NO(x)), and a significant decrease in antioxidant enzyme (SOD, GSH-Px and MPO) activities. We also found that the individual or plus application of NAC and EGCG resulted in the reduction of oxidative stress prior to E field application. CONCLUSION: To conclude, extremely low frequency (ELF) electric field has potential harmful effects on the living organisms by enhancing the free radical production. NAC and EGCG might have hepatoprotective effects in ELF-E field induced oxidative and nitrosative stress.

Modern age exposes humans to an increasing level of electromagnetic activity in their environment due to overhead power lines and transformers around residential areas. Studies have shown that treatment with antioxidants can suppress the oxidative damage induced by electromagnetic fields in various frequencies of the non-ionizing radiation band. In this study, we detected protein carbonyl content (PCO), advanced oxidation protein products (AOPP) in liver and 3-nitrotyrosine (3-NT) levels in plasma of guinea pigs in order to investigate the effects of N-acetyl-L-cysteine (NAC) administration on oxidative protein damage induced by power frequency electric (E) field (50 Hz, 12 kV/m, 7 days/8 h/day). We also analyzed hepatic hydroxyproline level to study protein synthesis. According to
the findings of the present study, no statistically significant changes occurred in PCO, AOPP and 3-NT levels of the guinea pigs that were exposed to the E field with respect to the control group. However, liver hydroxyproline level was significantly diminished in the E field exposure group compared to the control and PCO, hydroxyproline and 3-NT levels changed significantly in the NAC-administrated groups.

In order to test whether antioxidants have beneficiary effects on electric field induced damage, we determined the pulmonary levels of heme oxygenase-1 (HO-1), protein carbonyl content (PCO), malondialdehyde (MDA), nitric oxide (NO) and hydroxyproline (HP) under extremely low frequency (ELF) electric (E) field exposure (50 Hz, 12 kV/m, 7 days/for 8 h/day). While PCO levels significantly increased (p<0.05), insignificant changes (p>0.05) were observed in HO-1, MDA, NO and HP levels for electric field exposure groups compared to the control group. We have not observed any significant change in these parameters on the electric field group compared to the group where NAC and EGCG were separately applied along with electric field. However, during our previous studies, we have concluded that NAC and EGCG are potent antioxidants and we believe that new studies should be established by way of setting up different experimental conditions.

The effects of a static magnetic field (SMF) and high natural radioactivity (HR) on catalase and MAPK genes in Vicia faba were investigated. Soil samples with high natural radioactivity were collected from Ramsar in north Iran where the annual radiation absorbed dose from background radiation is higher than 20mSv/year. The specific activity of the radionuclides of (232)Th, (236)Ra, and (40)K was measured using gamma spectrometry. The seeds were planted either in the soil with high natural radioactivity or in the control soils and were then exposed to a SMF of 30mT for 8 days; 8h/day. Levels of expression of catalase and MAPK genes, catalase activity and H2O2 content were evaluated. The results demonstrated significant differences in the expression of catalase and MAPK genes in SMF- and HR-treated plants compared to the controls. An increase in catalase activity was accompanied by increased expression of its gene and accumulation of H2O2. Relative expression of the MAPK gene in treated plants, however, was lower than those of the controls. The results suggest that the response of V. faba plants to SMF and HR may be mediated by modification of catalase and MAPK.
Exposure to magnetic field (MF) can affect cellular metabolism remotely. Cardio-toxic effects of Doxorubicin (DOXO) have limited clinical uses at high dose. MF due to its effect on reactive oxygen species (ROS) lifetime, may provide a suitable choice to boost the efficacy of this drug at low dose. Here, we investigated the potential effects of homogenous static magnetic field (SMF) on DOXO-induced toxicity and proliferation rate of cancer cells. The results indicated that SMF similar to DOXO decreased the cell viability as well as the proliferation rate of MCF-7 and HFF cells. Moreover, combination of 10 mT SMF and 0.1 µM DOXO decreased the viability and proliferation rate of cancer and normal cells in a synergetic manner. In spite of high GSH level in cancer cell, SMF boosts the generation and lifetime of ROS at low dose of DOXO, and overcame to GSH mediated drug resistance. The results also confirmed that SMF exposure decreased 50% iron content of cells, which is attributed to iron homeostasis. In conclusion, these findings suggest that SMF can decrease required dose of chemotherapy drugs such as DOXO and thereby decrease their side effect.

In the present study, we hypothesized that an appropriate combination of a geomagnetic field (as a static field) and an alternative magnetic field may result in the promotion of maize seedling growth by an alleviation of an excess production of reactive oxygen species. First, we determined the applicable range of frequencies by theoretical calculations, and a combined magnetic field was designed. The seeds were germinated in the magnetic field for 4 days, and the seedlings were allowed to grow in a nutrient solution for another 4 days. The magnetic field-treated maize seeds produced seedlings with a faster growth rate than the control seeds. The activity of superoxide dismutase in the magnetic field-treated seedlings was lower, while the total antioxidant capacity of these seedlings was higher than that of the control group. The maintenance of membrane integrity and a decrease of iron content in the magnetic field-treated seedlings suggest that a combination of both static and alternative magnetic fields promotes the growth of the plants by lowering iron absorption, a reduction in the Fenton chemistry, and lowering the risk of oxidative burst.

The protective role of superoxide dismutase (SOD) against non-ionizing radiation such as static electromagnetic field (200 mT) has been studied in wild-type and mutant strain of Pseudomonas aeruginosa lacking cytosolic Mn-SOD (sodM), Fe-SOD (sodB), or both SODs (sodMB). Our results showed that inactivation of sodM and/or sodB genes increases the sensitivity of P. aeruginosa toward stress induced by the static magnetic field (200 mT). Furthermore, our results showed an enhancement of SOD, catalase, and peroxidases after exposure to the magnetic field. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than mutant strains. The malondialdehyde produced by the oxidative degradation of unsaturated lipids and fatty acids showed significant increase in mutant strains compared to the wild-type. The overall results showed that the SOD has a protective role against a stress induced by static electromagnetic field in P. aeruginosa.

The effects of exposure to extremely low frequency electric fields (ELF EFs) on plasma lipid peroxide levels and antioxidant activity (AOA) in Sprague-Dawley rats were studied. The test was based on comparisons among rats treated with a combination of the oxidizing agent, 2,2'-azobis(2-aminopropane) dihydrochloride (AAPH) and 50 Hz EF of 17.5 kV/m intensity for 15 min per day for 7 days, AAPH alone, EF alone or no treatment. EF significantly decreased the plasma peroxide level in rats treated with AAPH, similar to treatment by ascorbic acid or the superoxide dismutase. Ascorbic acid increased AOA; however, EF and superoxide dismutase did not change AOA compared with sham exposure in stressed rats. No influence on the lipid peroxide level and AOA in unstressed rats was observed with EF exposure alone. Although the administration of AAPH decreased AOA, this decrease did not change when EF was added. These data indicate that the ELF EF used in this study influenced the lipid peroxide level in an oxidatively stressed rat.

The question whether static magnetic fields (SMFs) and extremely low frequency electromagnetic fields (ELF-EMF) cause biological effects is of special interest. We investigated the effects of continuous whole body exposure to both fields for 30 days on some liver and blood parameters in mice. Two exposure systems were designed; the first produced a gradient SMF while the second generated uniform 50Hz ELF-EMF. The results showed a gradual body weight loss when mice were exposed to either field. This is coupled with a significant decrease (P<0.05) in the levels of glucose, total protein and the activity of alkaline phosphatase in serum. A significant increase in lactate dehydrogenase activity was demonstrated in serum and liver paralleled with a significant elevation in hepatic gamma-glutamyl transferase activity. The glutathione-S-transferase activity and lipid peroxidation level in the liver were significantly increased while a significant decrease in hepatic glutathione content was recorded. A significant decrease in the counts of monocytes,
platelets, peripheral lymphocytes as well as splenic total, T and B lymphocytes levels was observed for SMF and ELF-EMF exposed
groups. The granulocytes percentage was significantly increased. The results indicate that there is a relation between the exposure to
SMF or ELF-EMF and the oxidative stress through distressing redox balance leading to physiological disturbances.

(E) (VT, AE, IOD, IFR, IAO, DAO) Henrykowska G, Jankowski W, Pacholski K, Lewicka M, Smigielski J,
Dziedziczak-Buczyńska M, Buczyński A. The effect of 50 Hz magnetic field of different shape on oxygen metabolism in blood

OBJECTIVES: The aim of the study was to assess the influence that the shape of low frequency magnetic field may have on catalase
and superoxide dismutase activity, malondialdehyde concentration and free radicals generation in human blood platelets.
MATERIALS AND METHODS: The suspension of human blood platelets was exposed for 15 min to 50 Hz magnetic field of
different shape, and flux density of 10 mT. RESULTS: The determinations of free radicals, malondialdehyde and catalase showed
increased values compared with the initial level, regardless of the shape of the magnetic field applied. In contrast, superoxide
dismutase activity was lower than at the onset of the experiment. CONCLUSIONS: The findings indicate that the oxidative stress
resulting from exposure to 50 Hz magnetic field of 10 mT induction may produce a number of adverse effects within the cell and thus
may lead to systemic disturbances in the human body.

(NE) (VT, AE) Hong MN, Han NK, Lee HC, Ko YK, Chi SG, Lee YS, Gimm YM, Myung SH, Lee JS. Extremely low

The aim of this study was to determine whether extremely low frequency magnetic fields (ELF-MF) could affect intracellular reactive
oxygen species (ROS) levels and antioxidant enzyme activity. After MCF10A human breast epithelial cells were exposed to 1 mT of
60 Hz ELF-MF for 4 hours, intracellular ROS level, superoxide dismutase (SOD) activity, and reduced to oxidized glutathione
(GSH/GSSG) ratio were measured. The cells exposed to ELF-MF did not evidence statistically significant changes in the
above-mentioned biological parameters as compared to either the incubator controls or sham-exposed cells. By way of contrast, the
IR-exposed cells exhibited marked changes in ROS level, SOD activity, and GSH/GSSG ratio. When we assessed morphological
changes and senescence-associated beta-galactosidase (SA-β-Gal) activity, only the IR-exposed cells were positive. According to our
results, it could be concluded that ELF-MF has no effect on intracellular ROS level, SOD activity, and GSH/GSSG ratio under our
exposure condition.

(E) (HU, CE, IOD, IAO) Hosseinabadi MB, Khanjani N. The effect of extremely low-frequency electromagnetic fields on the
prevalence of musculoskeletal disorders and the role of oxidative stress. Bioelectromagnetics. 2019 Jun 18. doi:
10.1002/bem.22198. [Epub ahead of print]
Extremely low-frequency electromagnetic fields (ELF-EMFs) may cause negative health effects. This study aimed to investigate the direct and indirect effects of chronic exposure to extremely low-frequency electric and magnetic fields on the prevalence of musculoskeletal disorders (MSDs). In this cross-sectional study, 152 power plant workers were enrolled. The exposure level of employees was measured based on the IEEE Std C95.3.1 standard. Superoxide dismutase (SOD), catalase (Cat), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) (independent variables) were measured in the serum of subjects. The Nordic musculoskeletal questionnaire was used to assess MSDs (dependent variable). The mean exposure of electric and magnetic fields were 4.09 V/m (standard deviation [SD] = 4.08) and 16.27 µT (SD = 22.99), respectively. Increased levels of SOD, Cat, GPx, and MDA had a direct significant relation with MSDs. In the logistic regression model, SOD (odds ratio [OR] = 0.952, P = 0.026), GPx (OR = 0.991, P = 0.048), and MDA (OR = 0.741, P = 0.021) were significant predictors of MSDs. ELF-EMFs were not related to MSDs directly; however, increased levels of oxidative stress may cause MSDs.

PURPOSE: We tested the hypothesis that the effects of 50 Hz magnetic fields (MFs) on superoxide levels and genotoxicity depend on the presence of blue light. MATERIALS AND METHODS: Human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 100 µT MF with or without non-phototoxic level of blue light for 24 h. We also studied whether these treatments alter responses to menadione, an agent that induces mitochondrial superoxide (O$_2^-$) production and DNA damage. Micronuclei, proliferation, viability, cytosolic and mitochondrial O$_2^-$ levels were assessed. RESULTS: MF (without blue light) increased cytosolic O$_2^-$ production and blue light suppressed this effect. Mitochondrial O$_2^-$ production was reduced by both MF and blue light, but these effects were not additive. Micronucleus frequency was not affected by blue light or MF alone, but blue light (significantly when combined with MF) enhanced menadione-induced micronuclei. CONCLUSIONS: The original simple hypothesis (blue light is needed for MF effects) was not supported, but interaction of MF and blue light was nevertheless observed. The results are consistent with MF effects on light-independent radical reactions.

Although numerous studies have reported the influence of extremely low frequency magnetic field (ELF-MF) exposure on human health, its effects on cognitive deficits in Alzheimer's disease (AD) have remained under debate. Moreover, the influence of ELF-MF on hyperphosphorylated tau, which is one of the most common pathological hallmarks of AD, has not been reported to date. Therefore, transgenic mice (3xTg) were used in the present study. 3xTg mice, which express an APP/PS1 mutation combined with a tau (P301L) mutation and that develop cognitive deficits at 6 months of age, were subjected to ELF-MF (50Hz, 500μT) exposure or sham exposure daily for 3 months. We discovered that ELF-MF exposure ameliorated cognitive deficits and increased synaptic proteins in 3xTg mice. The protective effects of ELF-MF exposure may have also been caused by the inhibition of apoptosis and/or decreased oxidative stress levels that were observed in the hippocampus tissues of treated mice. Furthermore, tau hyperphosphorylation was decreased in vivo because of ELF-MF exposure, and this decrease was induced by the inhibition of GSK3β and CDK5 activities and activation of PP2Ac. We are the first to report that exposure to ELF-MF can attenuate tau phosphorylation. These findings suggest that ELF-MF exposure could act as a valid therapeutic strategy for ameliorating cognitive deficits and attenuating tau hyperphosphorylation in AD.

We have previously shown that simultaneous exposure of rat lymphocytes to iron ions and 50Hz magnetic field (MF) caused an increase in the number of cells with DNA strand breaks. Although the mechanism of MF-induced DNA damage is not known, we suppose that it involves free radicals. In the present study, to confirm our hypothesis, we have examined the effect of melatonin, an established free radicals scavenger, on DNA damage in rat peripheral blood lymphocytes exposed in vitro to iron ions and 50Hz MF. The alkaline comet assay was chosen for the assessment of DNA damage. During pre-incubation, part of the cell samples were supplemented with melatonin (0.5 or 1.0mM). The experiments were performed on the cell samples incubated for 3h in Helmholtz coils at 7mT 50Hz MF. During MF exposure, some samples were treated with ferrous chloride (FeCl2, 10microg/ml), while the rest served as controls. A significant increase in the number of cells with DNA damage was found only after simultaneous exposure of lymphocytes to FeCl2 and 7mT 50Hz MF, compared to the control samples or those incubated with FeCl2 alone. However, when the cells were treated with melatonin and then exposed to iron ions and 50Hz MF, the number of damaged cells was significantly reduced, and the effect depended on the concentration of melatonin. The reduction reached about 50% at 0.5mM and about 100% at 1.0mM. Our results indicate that melatonin provides protection against DNA damage in rat lymphocytes exposed in vitro to iron ions and 50Hz MF (7mT). Therefore, it can be suggested that free radicals may be involved in 50Hz magnetic field and iron ions-induced DNA damage in rat blood lymphocytes. The future experimental studies, in vitro and in vivo, should provide an answer to the question concerning the role of melatonin in the free radical processes in the power frequency magnetic field.
Simultaneous exposure of rat lymphocytes to 7 mT static magnetic field (SMF) and iron ions caused an increase in the number of cells with DNA damage. The mechanism by which MF induces DNA damage and the possible cytotoxic consequences are not known. However, we suppose that free radicals are involved. Potentially, the deterioration of DNA molecules by simultaneous exposure to 7 mT SMF and iron ions may lead to cell death: apoptosis or necrosis. The possible prooxidative properties of these two agents may result in an induction of the lipid peroxidation process as a marker of free radical mechanism in the cells. Experiments were performed on rat blood lymphocytes incubated for 3 h in Helmholtz coils at SMF of flux density 7 mT. During SMF exposure, some samples were treated with ferrous chloride (10 microg/ml), the rest serving as controls. We used the dye exclusion method with the DNA-fluorochromes: ethidium bromide and acridine orange. No significant differences were observed between unexposed lymphocytes incubated with medium alone and lymphocytes exposed to 7 mT SMF. Three-hour incubation with FeCl(2) (10 microg/ml) did not affect cell viability. However, when lymphocytes were exposed to 7 mT SMF and simultaneously treated with FeCl(2), there was a significant increase in the percentage of apoptotic and necrotic cells accompanied by significant alterations in cell viability. As compared to lipid peroxidation, there is a significant increase in the amount of lipid peroxidation end products MDA+4 HNE in rat lymphocytes after simultaneous exposure to 7 mT SMF and FeCl(2) (vs. to the control samples and those exposed to SMF alone). This suggests that 7 mT static magnetic field in the presence of Fe(2+) ions can increase the concentration of oxygen free radicals and thus may lead to cell death.

The purpose of this study was to examine the effect of melatonin and vitamin E (trolox) on the level of lipid peroxidation in rat blood lymphocytes after in vitro (3 h) exposure to iron ions and/or 7mT static magnetic field (SMF). The lipid peroxidation process was chosen as a marker of free radical mechanism of SMF in cells. The cells were supplemented with (0.5 mM) melatonin or (0.1 mM) vitamin E (trolox) in preincubation. During SMF exposure in Helmholtz coils some samples were treated with ferrous chloride (10 mg/ml or 20 mg/ml), while the rest served as controls. There is a significant increase in the amount of lipid peroxidation end-products (4-HNE + MDA) in rat lymphocytes after simultaneous exposure to 7 mT SMF and iron ions (versus control samples and those exposed to SMF alone). Instead, when the cells were treated with melatonin or trolox and then exposed to iron ions and 7 mT SMF, the level of lipid peroxidation was significantly reduced. The results also indicated that melatonin is less effective than vitamin E (trolox) in inhibiting lipid peroxidation under the experimental conditions used.
An extremely low-frequency magnetic field (50 Hz, 0.5 mT) was used to investigate its possible effect on the brain of adult male Wistar rats following a 7-day exposure. The control rats were sham-exposed. Superoxide dismutase activities and production of superoxide radicals, lipid peroxidation, and nitric oxide were examined in the frontal cortex, striatum, basal forebrain, hippocampus, brainstem, and cerebellum. Significantly increased superoxide radical contents were registered in all the structures examined. Production of nitric oxide, which can oppose superoxide radical activities, was significantly increased in some structures: the frontal cortex, basal forebrain, hippocampus, and brainstem. Augmentation of lipid peroxydation was also observed, with significance only in the basal forebrain and frontal cortex, in spite of the significantly increased superoxide dismutase activities and nitric oxide production in the basal forebrain, and increased production of nitric oxide in the frontal cortex. The results obtained indicate that a 7-day exposure to extremely low-frequency magnetic field can be harmful to the brain, especially to the basal forebrain and frontal cortex due to development of lipid peroxidation. Also, high production of superoxide anion in all regions may compromise nitric oxide signaling processes, due to nitric oxide consumption in the reaction with the superoxide radical.

We investigated an effect of extremely low frequency magnetic field (ELF-MF, 60 Hz) on hyperalgesia using hot plate test. The level of nitric oxide (NO) and the expression of nitric oxide synthase (NOS) were measured to determine if ELF-MF is engaged in NO mediated pain mechanism. Additionally, the involvement of Ca2+-dependent NO pathway in ELF-MF induced hyperalgesia was evaluated by blocking Ca2+ sources with NMDA receptor antagonist and Ca2+ channel blocker. The exposure of mice to ELF-MF lowered pain threshold and elevated NO synthesis in brain and spinal cord. An NOS inhibitor blocked these effects of ELF-MF with attenuating the reduction of pain threshold and the rise of NO level in brain and spine by the exposure of ELF-MF. The hyperalgesic effects of ELF-MF were also blocked by a Ca2+ channel blocker, nimodipine, but not by a NMDA receptor antagonist, MK-801. The expression of Ca2+ -dependent nNOS and eNOS and Ca2+ -independent iNOS were not changed by ELF-MF. These results indicated that the exposure of ELF-MF might cause Ca2+ -dependent NOS activation, which then induces hyperalgesia with the increase in NO synthesis. In conclusion, ELF-MF may produce hyperalgesia by modulating NO synthesis via Ca2+ -dependent NOS.

The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

PURPOSE: Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. MATERIALS AND METHODS: Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. RESULTS: The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. CONCLUSIONS: Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H2O2 (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells
exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of
pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H₂O₂, or c-Myc activation.

(E) (VO, CE, IOD, DAO) Jouni FJ, Abdolmaleki P, Ghanati F. Oxidative stress in broad bean (Vicia faba L.) induced by

The investigation was performed to evaluate the influence of the static magnetic field on oxidative stress in Vicia faba cultivated in
soil from high background natural radioactivity in Iran. Soil samples were collected from Ramsar, Iran where the annual radiation
absorbed dose from background radiation is substantially higher than 20 mSv/year. The soil samples were then divided into 2 separate
groups including high and low natural radioactivity. The plants were continuously exposed to static magnetic field of 15 mT for 8
days, each 8h/day. The results showed that in the plants cultivated in soils with high background natural radioactivity and low
background natural radioactivity the activity of antioxidant enzymes as well as flavonoid content were lower than those of the control.
Treatment of plants with static magnetic field showed similar results in terms of lowering of antioxidant defense system and increase
of peroxidation of membrane lipids. Accumulation of ROS also resulted in chromosomal aberration and DNA damage. This
phenomenon was more pronounced when a combination of natural radiation and treatment with static magnetic field was applied. The
results suggest that exposure to static magnetic field causes accumulation of reactive oxygen species in V. faba and natural
radioactivity of soil exaggerates oxidative stress.

of cisplatin and static magnetic field enhances oxidative stress in HeLa cell line. In Vitro Cell Dev Biol Anim. 53(9):783-790,
2017.

In this study, we reported the effects of simultaneous application of static magnetic field (SMF) and cisplatin as an anticancer drug on
the oxidative stress in human cervical cancer (HeLa) cell line and normal skin fibroblast cells (Hu02). The cells were exposed to
different SMF intensities (7, 10, and 15 mT) for 24 and 48 h. IC₅₀ concentrations of cisplatin were obtained by MTT assay. The
cytotoxic effects of combined treatment were studied by measuring the intracellular reactive oxygen species content using flow
cytometric method and estimation of membrane lipid peroxidation by spectrophotometry. Statistical analysis was assessed using
one-way repeated measures analysis of variance (ANOVA) followed by Tukey's test. Based on the obtained results, the highest and
lowest death rate, respectively, in HeLa and Hu02 cell lines was observed at the intensity of 10 mT. Also, we found that membrane
lipid peroxidation in cancer cells is higher than that of normal counterparts. SMF potently sensitized human cervical cancer cells to
cisplatin through reactive oxygen species (ROS) accumulation while it had small effects on normal cells. The combination of both
treatments for 48 h led to a marked decrease in the viability percentage of HeLa cells by about 89% compared to untreated cells. This study suggests that conjugation of both physical and chemical treatments could increase the oxidative stress in HeLa cell line and among three optional intensities of SMF, the intensity of 10 mT led to the higher damage to cancer cells in lower doses of drug.

The effects of extremely low-frequency electric fields (ELF-EFs, 3-300Hz) on lipid peroxidation levels and antioxidant enzyme activities have been shown in many tissues and plasma after exposure to 50-Hz alternating current (AC) electric fields. However, similar studies investigating brain lipid peroxidation status are limited. Moreover and as far as we know, no study has been conducted to examine mismatch negativity (MMN) response in rats following exposure to a 50-Hz AC electric field. Therefore, the purpose of the study was to investigate different intensities and exposure durations of ELF-EFs on MMN component of event-related potentials (ERPs) as well as apoptosis and oxidative brain damage in rats. Ninety male rats, aged 3 months were used in our study. A total of six groups, composed of 15 animals each, was formed as follows: sham-exposed rats for 2 weeks (C2), sham-exposed rats for 4 weeks (C4), rats exposed to 12-kV/m and 18-kV/m electric fields for 2 weeks (E12-2 and E18-2), rats exposed to 12- and 18-kV/m electric fields for 4 weeks (E12-4 and E18-4). At the end of the experimental period, MMN responses were recorded in urethane-anesthetized rats by electrodes positioned stereotaxically to the surface of the dura. After MMN recordings, animals were killed by exsanguination and their brain tissues were removed for 4-hydroxy-2-nonenal (4-HNE), protein carbonyl and TUNEL analysis. In the current study, different change patterns in ERP parameters were observed dependent on the intensity and exposure duration of ELF-EFs. There were differences in the amplitudes of ERP between the responses to the standard and the deviant tones in all groups. When peak-to-peak amplitude of the difference curves was evaluated, MMN amplitude was significantly decreased in the E18-4 group compared with the C4 group. Additionally, the amount of 4-HNE was increased in all experimental groups compared with the control group. Consequently, it could be concluded that electric field decreased MMN amplitudes possibly induced by lipid peroxidation.

(Karimi SA, Salehi I, Shykhi T, Zare S, Komaki A. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behav Brain Res. 359:630-638, 2019.

There are many controversies about the safety of extremely low-frequency electromagnetic field (ELF-EMF) on body health and cognitive performance. In the present study, we explored the effects of ELF-EMF on oxidative stress and behaviors of rats. Seventy-two adult male Wistar rats were randomly divided into following groups, control, sham exposure group and the ELF-EMF
exposure groups (1 μT, 100 μT, 500 μT, and 2000 μT). After 60 days exposure (2 h/day), elevated plus maze (EPM), Morris water maze (MWM) and Passive avoidance learning (PAL) tasks were used to evaluate the anxiety-like behavior, spatial and passive learning and memory, respectively. Some days after behavioral examination, oxidative stress markers were measured. During spatial reference memory test, animals in ELF-EMF exposure groups (100, and 2000 μT) spent more time in target zone (F (4, 55) = 5.699, P = 0.0007, One-way ANOVA). In PAL retention, the step through latency in the retention test (STLr) in ELF-EMF exposure groups (100,500, and 2000 μT) was significantly greater than control group (F (4, 55) = 29.13, P < 0.0001, One-way ANOVA). In EPM test, ELF-EMF exposure (500 and 2000 μT) decreased the percentage of the entries into the open arms (F (4, 55) = 26.31, P < 0.0001, one-way ANOVA).

Our results may allow the conclusion that exposure to ELF-EMFs can improve memory retention (but not acquisition) in the adult male rats. Although exposure to ELF-EMFs could be a factor in the development of anxious state or oxidative stress.

In the present study, experiments were performed to investigate the role of nitric oxide (NO) in magnetopriming-induced seed germination and early growth characteristics of soybean (Glycine max) seedlings under salt stress. The NO donor (sodium nitroprusside, SNP), NO scavenger (2-[4-carboxyphenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, CPTIO), inhibitors of nitrate reductase (sodium tungstate, ST) or NO synthase (N-nitro-L-Arg-methyl ester, LNAME) and NADPH oxidase inhibitor (diphenylene iodonium, DPI) have been used to measure the role of NO in the alleviation of salinity stress by static magnetic field (SMF of 200 mT, 1 h). Salt stress (50 mM NaCl) significantly reduced germination and early growth of seedlings emerged from non-primed seeds.

Pre-treatment of seeds with SMF positively stimulated the germination and consequently promoted the seedling growth. ST, LNAME, CPTIO and DPI significantly decreased the growth of seedling, activities of α-amylase, protease and nitrate reductase (NR), hydrogen peroxide (H₂O₂), superoxide (O₂⁻) and NO content in roots of seedlings emerged from non-primed and SMF-primed seeds. However, the extent of reduction was higher with ST in seedlings of SMF-primed seeds under both conditions, whereas SNP promoted all the studied parameters. Moreover, the generation of NO was also confirmed microscopically using a membrane permanent fluorochrome (4-5-diaminofluorescein diacetate [DAF-2 DA]). Further, analysis showed that SMF enhanced the NR activity and triggered the NO production and NR was maximally decreased by ST as compared to LNAME, CPTIO and DPI. Thus, in addition to ROS, NO might be one of the important signaling molecules in magnetopriming-induced salt tolerance in soybean and NR may be responsible for SMF-triggered NO generation in roots of soybean.
The attenuation of opioid peptide-mediated antinociception is a well-established effect of extremely low frequency (ELF) electromagnetic fields with alterations in calcium channel function and/or calcium ion flux and protein kinase C activity being implicated in the mediation of these effects. The present study was designed to examine the effects of nitric oxide (NO) and calcium ion/calmodulin-dependent nitric oxide synthase (NOS) on opioid-induced antinociception and their involvement in mediating the inhibitory effects of exposure to ELF magnetic fields. We observed that enkephalinase (SCH 34826)-induced, and likely enkephalin-mediated, antinociception in the land snail, Cepaea nemoralis, as measured by the enhanced latency of a foot withdrawal response to a thermal (40 degreesC) stimulus, was reduced by the NO releasing agent, S-nitro-N-acetylpenicillamide (SNP), and enhanced by the NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME). Exposure of snails to an ELF magnetic field (15 min, 60 Hz, 141 microT peak) also reduced the enkephalinase-induced antinociception. The inhibitory effects of the 60-Hz magnetic field were significantly reduced by the NO synthase inhibitor, l-NAME, and significantly enhanced by the NO releasing agent, SNP, at dosages which by themselves had no evident effects on nociceptive sensitivity. These results suggest that: (1) NO and NO synthase have antagonistic effects on opioid-induced analgesia in the snail, Cepaea and (2) the inhibitory effects of ELF magnetic fields on opioid analgesia involve alteration in NO and NO synthase activity.

Increased level of micronuclei was observed in SH-SY5Y cells in a previous study at 8 and 15 days after exposure to extremely low frequency (ELF) magnetic fields (MF), indicating possible induction of genomic instability in the progeny of the exposed cells. The aim of this study was to further explore the induction of genomic instability by ELF MFs by increasing the follow-up time up to 45 days after exposure. Human SH-SY5Y neuroblastoma cells were exposed to a 50Hz, 100μT MF for 24h with or without co-exposure to menadione (MQ), a chemical agent that increases cellular superoxide production. Micronuclei, reactive oxygen species (ROS) and lipid peroxidation (LPO) were measured at 15, 30 and 45 days after exposure. To study the possible causal role of ROS in the delayed effects of MF, the antioxidant N-acetylcysteine (NAC) was administered before MF exposure. Consistently with the previous study, the level of micronuclei was statistically significantly elevated 15 days after exposure. A similar effect was observed at 30 days, but not at 45 days after exposure. The level of LPO was statically significantly decreased 30 and 45 days after exposure. Consistently with our previous findings, the MF effect did not depend on co-exposure to MQ. Treatment with NAC effectively decreased cellular ROS level and suppressed the effect of MQ on ROS, but it did not block the MF effect, indicating that increase in ROS is not needed as a
causal link between MF exposure and induction of delayed effects. The results presented here are consistent with genomic instability that persists in the progeny of MF-exposed cells up to at least 30 days after exposure. Changes in LPO observed at 30 and 45 days after exposure indicates that the MF-initiated process may continue up to at least 45 days after exposure.

Extremely low-frequency (ELF) magnetic fields (MF) have been associated with adverse health effects in epidemiological studies. However, there is no known mechanism for biological effects of weak environmental MFs. Previous studies indicate MF effects on DNA integrity and reactive oxygen species, but such evidence is limited to MFs higher (greater than or equal to 100 µT) than those generally found in the environment. Effects of 10 and 30 µT fields were studied in SH-SY5Y and C6 cells exposed to 50-Hz MFs for 24 h. Based on earlier findings, menadione (MQ) was used as a cofactor. Responses to MF were observed in both cell lines, but the effects differed between the cell lines. Micronuclei were significantly increased in SH-SY5Y cells at 30 µT. This effect was largest at the highest MQ dose used. Increased cytosolic and mitochondrial superoxide levels were observed in C6 cells. The effects on superoxide levels were independent of MQ, enabling further mechanistic studies without co-exposure to MQ. The micronucleus and mitochondrial superoxide data were consistent with a conventional rising exposure-response relationship. For cytosolic superoxide, the effect size was unexpectedly large at 10 µT. The results indicate that the threshold for biological effects of ELF MFs is 10 µT or less.

We have investigated the effects of a sinusoidal 60 Hz magnetic field on free radical (superoxide anion) production, degranulation (beta-glucuronidase and lysozyme release) and viability in human neutrophils (PMNs). Experiments were performed blindly in very controlled conditions to examine the effects of a magnetic field in resting PMNs and in PMNs stimulated with a tumor promoter: phorbol 12-myristate 13-acetate (PMA). Exposure of unstimulated human PMNs to a 60 Hz magnetic field did not affect the functions examined. In contrast, exposure of PMNs to a 22 milliTesla (mT), 60 Hz magnetic field induced significant increases in superoxide anion (O2-) production (26.5%) and in beta-glucuronidase release (53%) when the cells were incubated with a suboptimal stimulating dose of PMA. Release of lysozyme and lactate dehydrogenase was unchanged by the magnetic field, whether the cells were stimulated or not. A 60 Hz magnetic field did not have any effect on O2- generation by a cell-free system xanthine/xanthine oxidase, suggesting that a magnetic field could upregulate common cellular events (signal transduction) leading to O2- generation and beta-glucuronidase
release. In conclusion, exposure of PMNs to a 22 mT, 60 Hz magnetic field potentiates the effect of PMA on O2- generation and beta-glucuronidase release. This effect could be the result of an alteration in the intracellular signaling.

In recent years, there has been a dramatic increase in the number and variety of electronic devices that emit electromagnetic waves. Because people live and work in close proximity to these pieces of electrical equipment, there is growing concern surrounding the destruction of homeostasis by electromagnetic field exposure. In the present study, the effects of 60 Hz 0.8 mT extremely low-frequency electromagnetic fields (ELF-EMF) on a macrophage cell line (RAW 264.7) were examined. Under defined ELF-EMF exposure conditions, the production of nitric oxide and pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were increased in RAW 264.7 cells and the expression of those genes was also upregulated. However, cell proliferation was not altered. Translocation of NF-κB (nuclear factor kappa B), molecules that act downstream of the pro-inflammatory cytokines, were increased to the nucleus under ELF-EMF exposure conditions. In addition, we found that ELF-EMF exposure elevated activation of nuclear factor of activated T cells (NFAT) 2, as well as positively affected the influx of calcium. Furthermore, with both the presence of a potent antioxidant (Resveratrol) and downregulation of the antioxidant-related gene Prx-1 (Peroxiredoxin-1), ELF-EMF was associated with higher inflammatory responses of macrophages. These results suggest that an ELF-EMF amplifies inflammatory responses through enhanced macrophage activation and can decrease the effectiveness of antioxidants.

Fluoride cytotoxicity has been associated with apoptosis, oxidative stress, general changes in DNA and RNA and protein biosynthesis, whereas the results of studies on the effect of SMF on antioxidant activity of cells are contradictory. Therefore, the aim of our study was to evaluate the simultaneous exposure of human cells to fluoride SMF that are generated by permanent magnets on the expression profile of the genes that are associated with the antioxidant defense system. Control fibroblasts and fibroblasts that had been treated with fluoride were subjected to the influence of SMF with a moderate induction. In order to achieve our aims, we applied modern molecular biology techniques such as the oligonucleotide microarray. Among the antioxidant defense genes, five (SOD1, PLK3, CLN8, XPA, HAO1), whose expression was significantly altered by the action of fluoride ions and the exposure to SMF were normalized their expression was identified. We showed that fluoride ions cause oxidative stress, whereas exposure to SMF with a
moderate induction can suppress their effects by normalizing the expression of the genes that are altered by fluoride. Our research may explain the molecular mechanisms of the influence of fluoride and SMF that are generated by permanent magnets on cells.

Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems.

PURPOSE: To explore the effects of power frequency magnetic fields (MF) on cell growth in prostate cancer, DU145, PC3, and LNCaP cells were examined in vitro. MATERIALS AND METHODS: The cells were exposed to various intensities and durations of 60-Hz sinusoidal MF in combination with various serum concentrations in the media. To analyze MF effects on cell growth, cell counting, trypan blue exclusion assay, Western blot analysis, flow cytometry, enzyme-linked immunosorbent assay (ELISA), semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence microscopy, and spectrofluorometry were used. RESULTS: MF exposure induced significant cell growth inhibition and apoptosis in an intensity- and time-dependent manner, in which cell cycle arrest, cleaved Caspase-3, and reactive oxygen species (ROS) increased. Pretreatment with a Caspase-3 inhibitor or antioxidant, N-acetyl-L-cysteine (NAC), significantly attenuated MF-induced cell growth inhibition and cell death. Media replacement experiments failed to show any notable change in the MF effects. CONCLUSIONS: These results demonstrate 60-Hz sinusoidal MF-activated cell growth inhibition of prostate cancer in vitro. Apoptosis together with cell cycle arrest were the dominant causes of
the MF-elicited cell growth inhibition, mediated by MF-induced ROS. These results suggest that a possibility of using 60-Hz MF in radiation therapy of prostate cancer could usefully be investigated.

We have examined the mutational effects of hydrogen peroxide (H(2)O(2)) in the presence and absence of an extremely low-frequency magnetic field (ELFMF), using pTN89 plasmids. Mutations were detected in the supF gene carried by these plasmids in Escherichia coli. The plasmids were either treated with H(2)O(2) (1 microM) alone at 37 degrees C for 4h, or were exposed to an ELFMF (60Hz, 5 millitesla (mT)) simultaneously with H(2)O(2) treatment. The mutation frequency was 2.28 x 10(-4) for H(2)O(2) treatment alone, and 5.81 x 10(-4) for ELFMF exposure with H(2)O(2) treatment. We did not observe any mutations using treatment with ELFMF exposure alone. This indicates that the ELFMF may potentiate H(2)O(2)-induced mutation. Sequence analysis of the supF mutant plasmids revealed that base substitutions, G: C-->A :T transitions and G:C-->T:A transversions were dominant in both treatment groups, and there was no difference in the mutation spectrum or the hotspots between the groups. Therefore, ELFMFs may interact and potentiate the damage induced by H(2)O(2), resulting in an increase in the number of mutations.

PURPOSE: To detect the effects of extremely low frequency (ELF) magnetic fields, the number of apurinic/apyrimidinic (AP) sites in human glioma A172 cells was measured following exposure to ELF magnetic fields. MATERIALS AND METHODS: The cells were exposed to an ELF magnetic field alone, to genotoxic agents (methyl methane sulfonate (MMS) and hydrogen peroxide (H2O2)) alone, or to an ELF magnetic field with the genotoxic agents. After exposure, DNA was extracted, and the number of AP sites was measured. RESULTS: There was no difference in the number of AP sites between cells exposed to an ELF magnetic field and sham controls. With MMS or H2O2 alone, the number of AP sites increased with longer treatment times. Exposure to an ELF magnetic field in combination with the genotoxic agents increased AP-site levels compared with the genotoxic agents alone. CONCLUSIONS: Our results suggest that the number of AP sites induced by MMS or H2O2 is enhanced by exposure to ELF magnetic fields at 5 millitesla (mT). This may occur because such exposure can enhance the activity or lengthen the lifetime of radical pairs.

Exposure to static magnetic fields (SMF) can cause changes in microorganism metabolism altering key subcellular functions. The purpose of this study was to investigate whether an applied SMF could induce biological effects on growth of Saccharomyces cerevisiae, and then to probe biochemical and bio-molecular responses. We found a decrease in growth and viability under SMF (250mT) after 6h with a significant decrease in colony forming units followed by an increase between 6 h and 9 h. Moreover, measurements of antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase) demonstrated a particular profile suggesting oxidative stress. For instance, SOD and catalase activities increased in magnetized cultures after 9 h compared with unexposed samples. However, SMF exposure caused a decrease in glutathione peroxidase activity. Finally, SMF caused an increase in MDA levels as well as the content of protein carbonyl groups after 6 and 9 h of exposure.

Background: In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule. Methods: Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect. Results: Bone mineral density levels of L1–L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group. Conclusion: Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status.

The results of studies on the biological influence of magnetic fields are controversial and do not provide clear answers regarding their impact on cell functioning. Fluoride compounds are substances that influence free radical processes, which occur when the reactive forms of oxygen are present. It is not known whether static magnetic fields (SMF) cause any changes in fluoride assimilation or activity. Therefore, the aim of this work was to determine the potential relationship between magnetic field exposure to, and the antioxidant system of, fibroblasts cultured with fluoride ions. Three chambers with static magnetic fields of different intensities (0.4, 0.6, and 0.7 T) were used in this work. Fluoride ions were added at a concentration of 0.12 mM, which did not cause the precipitation of calcium or magnesium. The results of this study show that static magnetic fields reduce the oxidative stress caused by fluoride ions and normalize the activities of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Static magnetic fields modify the energy state of fibroblasts, causing an increase in the ATP concentration and a decrease in the MDA concentration. These results suggest that exposure to fluoride and an SMF improves the tolerance of cells to the oxidative stress induced by fluoride ions.

With the development of technology, people are increasingly under the exposure of electromagnetic fields. Individuals with chronic diseases such as diabetes are now long-term exposed to Radio Frequency-RF radiation and extremely low frequency (ELF) magnetic fields (MFs). The purpose of this present study is to investigate oxidative effects and antioxidant parameters of ELF MFs and RF radiation on testis tissue in diabetic and healthy rats. Wistar male rats were divided into 10 groups. Intraperitoneal single dose STZ (65 mg/kg) dissolved in citrate buffer (0.1M (pH 4.5)) was injected to diabetes groups. ELF MFs and RF radiation were used as an electromagnetic exposure for 20 min/day, 5 days/week for one month. Testis tissue oxidant malondialdehyde (MDA), and antioxidants glutathione (GSH), and total nitric oxide (NOx) levels were determined. The results of ANOVA and Mann-Whitney tests were compared; p < 0.05 was considered significant. ELF and RF radiation resulted in an increase in testicular tissue MDA and NOX levels (p < 0.05), and caused a decrease in GSH levels (p < 0.05) in both healthy and diabetic rats, yet more distinctively in diabetic rats. The most pronounced effect was recorded in D-RF + ELF group (p < 0.005). Both radiation practices increased the oxidative stress in testis tissue while causing a decrease in antioxidant level which was more distinctive in diabetic rats (Tab. 1, Fig. 3, Ref. 30).

PURPOSE: This review focuses on our own data and other data from the literature of static magnetic fields (SMF) bioeffects and vitamins and glucose metabolism. Three main areas of investigation have been covered: Static magnetic field and glucose metabolism,
static magnetic field and vitamins and the role of vitamins on glucose metabolism. CONCLUSION: Considering these articles comprehensively, the conclusions are as follows: The primary cause of changes in cells after incubation in external SMF is disruption of free radical metabolism and elevation of their concentration. Such disruption causes oxidative stress leading to an unsteadiness of glucose level and insulin release. Moreover, based on available data, it was concluded that exposure to SMF alters plasma levels of vitamin A, C, D and E; these parameters can take part in disorder of glucose homeostasis and insulin release.

This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.

In previous research, we have found an increase in DNA single- and double-strand breaks in brain cells of rats after acute exposure (two hours) to a sinusoidal 60-Hz magnetic field. The present experiment was carried out to investigate whether treatment with melatonin and the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) could block the effect of magnetic fields on brain cell DNA. Rats were injected with melatonin (1 mg/kg, sc) or PBN (100 mg/kg, ip) immediately before and after two hours of exposure to
a 60-Hz magnetic field at an intensity of 0.5 mT. We found that both drug treatments blocked the magnetic field-induced DNA single- and double-strand breaks in brain cells, as assayed by a microgel electrophoresis method. Since melatonin and PBN are efficient free radical scavengers, these data suggest that free radicals may play a role in magnetic field-induced DNA damage.

In previous research, we found that rats acutely (2 hr) exposed to a 60-Hz sinusoidal magnetic field at intensities of 0.1-0.5 millitesla (mT) showed increases in DNA single- and double-strand breaks in their brain cells. Further research showed that these effects could be blocked by pretreating the rats with the free radical scavengers melatonin and N-tert-butyl-alpha-phenylnitrone, suggesting the involvement of free radicals. In the present study, effects of magnetic field exposure on brain cell DNA in the rat were further investigated. Exposure to a 60-Hz magnetic field at 0.01 mT for 24 hr caused a significant increase in DNA single- and double-strand breaks. Prolonging the exposure to 48 hr caused a larger increase. This indicates that the effect is cumulative. In addition, treatment with Trolox (a vitamin E analog) or 7-nitroindazole (a nitric oxide synthase inhibitor) blocked magnetic-field-induced DNA strand breaks. These data further support a role of free radicals on the effects of magnetic fields. Treatment with the iron chelator deferiprone also blocked the effects of magnetic fields on brain cell DNA, suggesting the involvement of iron. Acute magnetic field exposure increased apoptosis and necrosis of brain cells in the rat. We hypothesize that exposure to a 60-Hz magnetic field initiates an iron-mediated process (e.g., the Fenton reaction) that increases free radical formation in brain cells, leading to DNA strand breaks and cell death. This hypothesis could have an important implication for the possible health effects associated with exposure to extremely low-frequency magnetic fields in the public and occupational environments.

PURPOSE: Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. MATERIALS AND METHODS: Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. RESULTS: We found that the energy effectively killed/retarded the growth of the three different types of
cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. **CONCLUSION:** Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

Among the putative mechanisms, by which extremely low frequency (ELF) magnetic field (MF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigated whether ELF (60 Hz) MF can modulate antioxidant system in mouse brain by detecting chemiluminescence and measuring superoxide dismutase (SOD) activity in homogenates of the organ. Compared to sham exposed control group, lucigenin-initiated chemiluminescence in exposed group was not significantly increased. However, lucigenin-amplified t-butyl hydroperoxide (TBHP)-initiated brain homogenates chemiluminescence, was significantly increased in mouse exposed to 60 Hz, MF, 12 G for 3 h compared to sham exposed group. We also measured SOD activity, that plays a critical role of the antioxidant defensive system in brain. In the group exposed to 60 Hz, MF, 12 G for 3 h, brain SOD activity was significantly increased. These results suggest that 60 Hz, MF could deteriorate antioxidant defensive system by reactive oxygen species (ROS), other than superoxide radicals. Further studies are needed to identify the kind of ROS generated by the exposure to 60 Hz, MF and elucidate how MF can affect biological system in connection with oxidative stress.

Epidemiological studies have suggested that extremely low-frequency magnetic fields (ELF-MF) are associated with an increased incidence of cancer. Studies using in vitro systems have reported mixed results for the effects of ELF-MF alone, and the World Health Organization (WHO) Research Agenda published in 2007 suggested that high priority research should include an evaluation of the co-carcinogenic effects of ELF-MF exposure using in vitro models. Here, the carcinogenic potential of ELF-MF exposure alone and in combination with various stress factors was investigated in NIH3T3 mouse fibroblasts using an in vitro cellular transformation assay. NIH3T3 cells were exposed to a 60 Hz ELF-MF (1 mT) alone or in combination with ionizing radiation (IR), hydrogen peroxide (H_2O_2), or c-Myc overexpression, and the resulting number of anchorage-independent colonies was counted. A 4 h exposure of NIH3T3 cells to ELF-MF alone produced no cell transformation. Moreover, ELF exposure did not influence the transformation
activity of IR, H₂O₂, or activated c-Myc in our in vitro assay system, suggesting that 1 mT ELF-MF did not affect any additive or synergistic transformation activities in combination with stress factors such as IR, H₂O₂, or activated c-Myc in NIH3T3 cells.

PURPOSE: The purpose of this study is to investigate the mechanism of cellular proliferation of electromagnetic field (EMF) on human intervertebral disc (IVD) cells. MATERIALS AND METHODS: Human IVD cells were cultured three-dimensionally in alginate beads. EMF was exposed to IVD cells with 650 Ω, 1.8 millitesla magnetic flux density, 60 Hz sinusoidal wave. Cultures were divided into a control and EMF group. Cytotoxicity, DNA synthesis and proteoglycan synthesis were measured by MTT assay, [(3)H]-thymidine, and [(35)S]-sulfate incorporation. To detect phenotypical expression, reverse transcription-polymerase chain reactions (RT-PCR) were performed for aggrecan, collagen type I, and type II mRNA expression. To assess action mechanism of EMF, IVD cells were exposed to EMF with N(G)-Monomethyl-L-arginine (NMMA) and acetylsalicylic acid (ASA). RESULTS: There was no cytotoxicity in IVD cells with the EMF group in MTT assay. Cellular proliferation was observed in the EMF group (p < 0.05). There was no difference in newly synthesized proteoglycan normalized by DNA synthesis between the EMF group and the control. Cultures with EMF showed no significant change in the expression of aggrecan, type I, and type II collagen mRNA compared to the control group. Cultures with NMMA (blocker of nitric oxide) or ASA (blocker of prostaglandin E2) exposed to EMF demonstrated decreased DNA synthesis compared to control cultures without NMMA or ASA (p < 0.05). CONCLUSION: EMF stimulated DNA synthesis in human IVD cells while no significant effect on proteoglycan synthesis and chondrogenic phenotype expressions. DNA synthesis was partially mediated by nitric oxide and prostaglandin E2. EMF can be utilized to stimulate proliferation of IVD cells, which may provide efficient cell amplification in cell therapy to degenerative disc disease.

One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge,
some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

BACKGROUND: Electromagnetic radiation emitted by a variety of devices, e.g. cell phones, computers and microwaves, interacts with the human body in many ways. Research studies carried out in the last few decades have not yet resolved the issue of the effect of this factor on the human body and many questions are left without an unequivocal answer. Various biological and health-related effects have not been fully recognized. Thus further studies in this area are justified. OBJECTIVES: A comparison of changes within catalase enzymatic activity and malondialdehyde concentration arising under the influence of the electromagnetic radiation emitted by car electronics, equipment used in physiotherapy and LCD monitors. MATERIAL AND METHODS: The suspension of human blood platelets at a concentration of 1 × 10^9/0.001 dm^3, obtained from whole blood by manual apheresis, was the study material. Blood platelets were exposed to an electromagnetic field for 30 min in a laboratory stand designed for the reconstruction of the electromagnetic radiation generated by car electronics, physiotherapy equipment and LCD monitors. The changes in catalase activity and malondialdehyde concentration were investigated after the exposure and compared to the control values (unexposed material). RESULTS: An increase in catalase activity and malondialdehyde concentration was observed after 30 min exposure of platelets to EMF regardless of the radiation source. The most significant changes determining the degree of oxidative stress were observed after exposure to the EMF generated by car electronics. CONCLUSIONS: The low frequency electromagnetic fields generated by car electronics, physiotherapy equipment and LCD monitors may be a cause of oxidative stress in the human body and may lead to free radical diseases.

PURPOSE: To investigate whether extremely low frequency electromagnetic field (ELF-EMF) exposure could induce oxidative stress in workers performing tour-inspection near transformers and distribution power lines. MATERIALS AND METHODS: Occupational short-term 'spot' measurements were performed. In total, 310 inspection workers exposed to ELF-EMF were selected as the exposure group and 300 logistical staff as the control group. Plasma total antioxidant capacity (T-AOC) and glutathione peroxidase (GPx) activity were tested by the colorimetric method. Superoxide dismutase (SOD) activity was tested using the xanthine oxidase method.
Plasma malondialdehyde (MDA) concentration was determined with a thiobarbituric acid assay. The micronucleus cell frequency (MCF) and Micronuclei frequency (MN) were also tested for genotoxic assessment. RESULTS: No significant changes of enzyme activities or MDA concentration were found. Neither the frequency of micronucleus lymphocytes nor micronuclei frequency changes were statistically significant. CONCLUSION: Continual ELF-EMF exposure might not induce oxidative stress in workers from a power supply bureau.

Extremely low frequency electromagnetic field (ELF-EMF) exposure is attracting increased attention as a possible disease-inducing factor. The in vivo effects of short-term and long-term ELF-EMF exposure on male Drosophila melanogaster were studied using transcriptomic analysis for preliminary screening and QRT-PCR for further verification. Transcriptomic analysis indicated that 439 genes were up-regulated and 874 genes were down-regulated following short-term exposures and that 514 genes were up-regulated and 1206 genes were down-regulated following long-term exposures (expression >2- or <0.5-fold, respectively). In addition, there are 238 up-regulated genes and 598 down-regulated genes in the intersection of short-term and long-term exposure (expression >2- or <0.5-fold). The DEGs (differentially expressed genes) in D. melanogaster following short-term exposures were involved in metabolic processes, cytoskeletal organization, mitotic spindle organization, cell death, protein modification and proteolysis. Long-term exposure let to changes in expression of genes involved in metabolic processes, response to stress, mitotic spindle organization, aging, cell death and cellular respiration. In the intersection of short-term and long-term exposure, a series of DEGs were related to apoptosis, aging, immunological stress and reproduction. To check the ELF-EMF effects on reproduction, some experiments on male reproduction ability were performed. Their results indicated that short-term ELF-EMF exposure may decrease the reproductive ability of males, but long-term exposures had no effect on reproductive ability. Down-regulation of ark gene in the exposed males suggests that the decrease in reproductive capacity may be induced by the effects of ELF-EMF exposure on spermatogenesis through the caspase pathway. QRT-PCR analysis confirmed that jra, ark and decay genes were down regulated in males exposed for 1 Generation (1G) and 72h, which suggests that apoptosis may be inhibited in vivo. ELF-EMF exposure may have accelerated cell senescence, as suggested by the down-regulation of both cat and jra genes and the up-regulation of hsp22 gene. Up-regulation of totA and hsp22 genes during exposure suggests that exposed flies might induce an in vivo immune response to counter the adverse effects encountered during ELF-EMF exposure. Down-regulation of cat genes suggests that the partial oxidative protection system might be restrained, especially during short-term exposures. This study demonstrates the bioeffects of ELF-EMF exposure and provides evidence for understanding the in vivo mechanisms of ELF-EMF exposure on male D. melanogaster.
We studied the effect of 2.0 GHz radio frequency electromagnetic field (RF-EMF) and 50 Hz extremely low frequency electromagnetic field (ELF-EMF) exposure on prion generation and propagation using two budding yeast strains, NT64C and SB34, as model organisms. Under exposure to RF-EMF or ELF-EMF, the de novo generation and propagation of yeast prions [URE3] were elevated in both strains. The elevation increased over time, and the effects of ELF-EMF occurred in a dose-dependent manner. The transcription and expression levels of the molecular chaperones Hsp104, Hsp70-Ssa1/2, and Hsp40-Ydj1 were not statistically significantly changed after exposure. Furthermore, the levels of ROS, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were significantly elevated after short-term, but not long-term exposure. This work demonstrated for the first time that EMF exposure could elevate the de novo generation and propagation of yeast prions and supports the hypothesis that ROS may play a role in the effects of EMF on protein misfolding. The effects of EMF on protein folding and ROS levels may mediate the broad effects of EMF on cell function.

Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Na⁺ activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Na⁺ current (I\(_{\text{Na}}\)) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced I\(_{\text{Na}}\) increase. This inhibitory effect of MT is mimicked by an MT\(_2\) receptor agonist and was eliminated by an MT\(_2\) receptor antagonist. The Na⁺ channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Na⁺ activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca\(^{2+}\) level, but it significantly elevated the intracellular Ca\(^{2+}\) level evoked by the high K⁺ stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal I\(_{\text{Na}}\) that result from ELF-EMF exposure through Ca\(^{2+}\) influx-induced Ca\(^{2+}\) release.
OBJECTIVE: To study the effects of extremely low frequency electromagnetic field (ELF EMF) and its combination with lead on the antioxidant system in mouse brain and liver tissues. METHOD: Mice were exposed to a 50 Hz sinusoidal 0.2 mT or 6.0 mT EMF for 2 weeks. At the same time, some groups were exposed to lead (50 mg/kg). After the exposure, the antioxidant system and cell membrane fluidity in brain and liver were measured. RESULTS: Malondiadehyde (MDA) content in brain and liver increased from the control levels of (1.33 +/- 0.12) and (3.95 +/- 0.21) nmol/mg pro to (1.35 +/- 0.09) and (6.15 +/- 0.28) nmol/mg pro respectively following 0.2 mT exposure, and to (3.98 +/- 0.10) and (6.50 +/- 0.79) nmol/mg pro respectively following 6.0 mT exposure. Total antioxidant capability (T-AOC) in brain and liver decreased from the control levels of (4.39 +/- 0.48) and (2.45 +/- 0.21) U/mg pro to (3.99 +/- 0.39) and (1.92 +/- 0.32) U/mg pro respectively following 0.2 mT, and to (3.12 +/- 0.37) and (1.57 +/- 0.14) U/mg pro respectively following 6.0 mT. GSH content decreased only in liver tissue from the control level of (194.60 +/- 20.93) mg/g pro to (189.24 +/- 5.61) mg/g pro (0.2 mT) and (153.04 +/- 1.18) mg/g pro (6.0 mT). Cellular membrane fluidity decreased from the control levels of (1.396 +/- 0.040) and (2.899 +/- 0.552) to (1.224 +/- 0.190) and (1.894 +/- 0.0761) (0.2 mT), (1.159 +/- 0.179) and (1.516 +/- 0.204) (6.0 mT) respectively. Compared with single EMF exposure (6.0 mT), EMF combined with lead exposure induced remarkable increase in MDA, GSH content and T-AOC and decrease in cell membrane fluidity both in the brain and liver, and increase in SOD activity only in liver. CONCLUSION: ELF EMF might alter the metabolism of free radicals, decrease anti-oxidant capability and enhance lipid peroxidation. The combination of EMF with lead showed synergic effects on lipid peroxidation.

With the increasing use of electromagnetic technology, the effects of extremely low-frequency electromagnetic fields (ELF-EMF) on biological systems, central neurotransmitter systems, and human health have attracted extensive attention worldwide. In this study, lotus seedpod procyanidins (LSPCs) were evaluated for their protective effects on ELF-EMF induced oxidative stress injury in mice. Sixty male ICR mice were used for the experiment. The mice were randomly divided into five equal groups. The control group did not receive LSPCs or ELF-EMF but orally received normal saline. The ELF-EMF group received ELF-EMF exposure plus normal saline orally. The other three groups received ELF-EMF exposure plus LSPCs orally (60, 90, or 120mg kg(-1).bw, respectively). Each group exposed to ELF-EMF at 8 mT, 4h day(-1) for 28 consecutive days after administration daily of LSPCs or normal saline to mice for 15 consecutive days with the exception of the control group. Thereafter, blood and cerebral cortex of the mice were analyzed for antioxidant indices, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase
glutathione-S-transferase (GST) and malondialdehyde (MDA). LSPCs administration at different doses significantly inhibited oxidative stress damage of mice induced by ELF-EMF. LSPCs treatment augmented SOD, CAT, GSH-Px, GR and GST activity. Furthermore, administration significantly lowered MDA level in LSPCs treatment groups LSPCs. All results indicated LSPCs can effectively prevent oxidative stress injury induced by ELF-EMF exposure, which may be related to its ability of scavenging free radicals and stimulating antioxidant enzyme activity.

In recent decades, man-made electric fields have greatly increased the intensity of electrostatic fields that are pervasively present in the environment. To better understand the physiological alterations exhibited by herbivorous insects in response to changing electric environments, we determined the activities of anti-oxidative enzymes and the metabolic rate of Sitobion avenae Fabricius (Hemiptera: Aphididae) over multiple generations in response to direct and host-seed exposure to a high-voltage electrostatic field (HVEF) of varying strength for different durations. Under controlled greenhouse conditions, 20-min direct exposure of S. avenae and wheat seeds to a 2- or 4-kV/cm HVEF resulted in significantly increased superoxide dismutase (SOD) activity in the sixth, 11th, 16th, and 21st generations relative to the control activities, whereas significantly decreased SOD activity was detected in the second generation. In addition, the activities of catalase (CAT) and peroxidase (POD) in S. avenae showed significant decreases over multiple generations. We also examined the suppressive effects of the duration of 4-kV/cm treatment on aphid physiology. The results showed that exposure to the 4-kV/cm HVEF for 20 min exerted adverse effects on CAT and POD activities and significantly decreased the metabolic rates of S. avenae, as demonstrated through evaluations of CO₂ production rate, and these parameters were not significantly affected by higher HVEF durations. Overall, these findings increase our understanding of plant-pest interactions under novel HVEF environments and provide information that can improve integrated management strategies for S. avenae.

The effects of pesticide mixtures and electric and magnetic fields on honeybees were evaluated in three experimental sites located in northern Italy: a control site far from anthropogenic-stress sources, a semi-natural site close to a high-voltage electric line and an agricultural site with intensive pesticide use. From each experimental site, young workers and foraging bees were taken monthly from May to October and analyzed for four enzymatic biomarkers: acetylcholinesterase (AChE), catalase (CAT), glutathione S-transferase (GST) and alkaline phosphatase (ALP). The results revealed time- and site-specific effects in respect to control site, confirming the
role of biomarkers as diagnostic and early-warning tools for multi-stress sources on honeybees. In the electromagnetic-stress site, the effect of an over-activation of all analyzed biomarkers was observed at the end of the season. According to other literature findings, this event was related to a behavioral over-activation in a period in which bees should prepare themselves for overwintering. This finding poses potential problems for winter survival. In the pesticide-stress site, different pesticide-induced responses were identified. We demonstrated in the field that pesticide mixtures currently used in agriculture could greatly affect the biochemical parameters of bees (with both enzymatic under- and over-activations).

The aim of this study was to investigate the mechanism of cell activation induced by extremely low frequency magnetic fields (ELF-MF) (50 Hz) in human cells. We examined the production of free radicals in human umbilical cord blood-derived monocytes and in human Mono Mac 6 cells. The release of superoxide radical anions was analyzed using nitroblue tetrazolium chloride and the total of reactive oxygen species (ROS) was detected using dihydrorhodamine 123. Our results show a significant increase of superoxide radical anion production up-to 1.4 fold as well as an increase in ROS release up-to 1.2 fold upon exposure of monocytes to 1 mT ELF-MF (45 min). Mono Mac 6 cells exhibit higher superoxide radical anion and ROS production up-to 1.4 and 1.5 fold, respectively. These results indicate that Mono Mac 6 cells are more sensitive to ELF-MF than monocytes. Using diphenyleneiodonium chloride (DPI) a specific inhibitor for the NADPH oxidase, the MF-effect was not inhibited in Mono Mac 6 cells. Therefore, we suggest that ELF-MF exposure induces the activation of NADH oxidase in these cells. However, the MF-effect was inhibited by DPI in monocytes, indicating the activation of the NADPH oxidase after exposure to ELF-MF.

Epidemiological studies have suggested that exposure to 50Hz magnetic fields (MF) increases the risk of childhood leukemia, but there is no mechanistic explanation for carcinogenic effects. In two previous studies we have observed that a 24-h pre-exposure to MF alters cellular responses to menadione-induced DNA damage. The aim of this study was to investigate the cellular changes that must occur already during the first 24h of exposure to MF, and to explore whether the MF-induced changes in DNA damage response can lead to genomic instability in the progeny of the exposed cells. In order to answer these questions, human SH-SY5Y neuroblastoma cells were exposed to a 50-Hz, 100-μT MF for 24h, followed by 3-h exposure to menadione. The main finding was that MF exposure was associated with increased level of micronuclei, used as an indicator of induced genomic instability, at 8 and 15d after the
exposures. Other delayed effects in MF-exposed cells included increased mitochondrial activity at 8d, and increased reactive oxygen species (ROS) production and lipid peroxidation at 15d after the exposures. Oxidative processes (ROS production, reduced glutathione level, and mitochondrial superoxide level) were affected by MF immediately after the exposure. In conclusion, the present results suggest that MF exposure disturbs oxidative balance immediately after the exposure, which might explain our previous findings on MF altered cellular responses to menadione-induced DNA damage. Persistently elevated levels of micronuclei were found in the progeny of MF-exposed cells, indicating induction of genomic instability.

In the past three decades, study on the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) has been of interest to scientists. Although the exact mechanism of its effect is not fully understood, free radical processes has been proposed as a possible mechanism. This study was designed to evaluate the effect of 50-Hz EMFs on the mRNA levels of seven antioxidant genes (CAT, SOD1, SOD2, GSTO1, GSTM3, MSGT1, and MSGT3) in human MCF-7 cells. The EMF exposure patterns were: 1) 5 min field-on/5 min filed-off, 2) 15 min field-on/15 min field-off, 3) 30 min field-on continuously. In all three exposure conditions we tried to have total exposure time of 30 minutes. Control cultures were located in the exposure apparatus when the power was off. The experiments were done at two field intensities; 0.25 mT and 0.50 mT. The RNA extraction was done at two times; immediately post exposure and two hours post exposure. The mRNA levels were determined using quantitative real-time polymerase chain reaction. MTT assay for three exposure conditions in the two field intensities represented no cytotoxic effect on MCF-7 cells. Statistical comparison showed a significant difference between 0.25 mT and 0.50 mT intensities for "the 15 min field-on/15 min field-off condition" (Fisher's exact test, P=0.041), indicating that at 0.50 mT intensity field, the number of down-regulated and/or up-regulated genes increased compared with the other ones. However, there is no statistical significant difference between the field intensities for the two others EMF exposure conditions.

Cisplatin [cis-dichlorodiammine platinum (II), CDDP], morphine (Mor), and electromagnetic field (EMF) induced oxidative stress. In this study, we tried to increase the cytotoxicity of CDDP in combination with Mor and/or EMF in MCF-7 and SH-SY5Y cells. Furthermore, we evaluate the expression levels of 11 antioxidant genes in both cell lines. We designed four treatments: CDDP alone, "CDDP+Mor," "CDDP+EMF," and "CDDP+Mor+EMF." Serial dilutions of CDDP, Mor (5.0 μM), and EMF (50 Hz, 0.50 mT, "15 min field-on/15 min field-off") were used for estimation of relative IC\textsubscript{50} values. The mRNA expression levels of antioxidant
genes were determined by real-time PCR. The IC$_{50}$ value of CDDP in "CDDP+Mor+EMF" treatment was significantly higher than CDDP alone and "CDDP+Mor" treatments in both cell lines. Whereas the expression levels of antioxidant genes in the four treatments showed similar patterns in MCF-7 cells, in SH-SY5Y cells, most of the antioxidant genes showed an upregulation with "CDDP+EMF" and "CDDP+Mor+EMF" treatments. Moreover, significant differences in the number of upregulated genes were observed between different treatments in SH-SY5Y cells. The molecular mechanism of CDDP-reduced cytotoxicity in our designed combinations is probably different in MCF-7 and SH-SY5Y cells. CDDP in combination with EMF could protect SH-SY5Y cells from the cytotoxicity, whereas it has no significant change in MCF-7 cells.

β-Lapachone (β-Lap), morphine (Mor), and electromagnetic field (EMF) generate reactive oxygen species. The goal of the present study was to examine the effects of Mor and EMF, in combination with β-Lap on the cell growth inhibition and expression of several antioxidant genes. The 0.50 mT intensity of 50 Hz EMF and two exposure conditions ("15 min field-on/15 min field-off" and "30 min field-on continuously") on SH-SY5Y cells were used. The effects of Mor and EMF, in combination with β-Lap on cell growth inhibition and the expression levels of several antioxidant genes (NQO1, NQO2, SOD1, SOD2, CAT, GSTO1, GSTM2, GSTM3, GSTP1, MGST1, MGST3) in SH-SY5Y cells were measured. The relative mRNA levels were calculated according to the [Formula: see text]. Whereas NQO1 mRNA level decreased in the "15 min field-on/15 min field-off" condition, the expression level of NQO2 was increased. Both NQO1 and NQO2 expressions increased in Mor treated cells. IC$_{50}$ values of β-Lap in combination with Mor, EMF, and "Mor + EMF" were higher than cells treated only with β-Lap. The NQO1 expression level in the cells treated with β-Lap was higher than the other treatments, indicating that β-Lap induces the expression of NQO1. Moreover, multiple linear regression analysis indicated that NQO1 mRNA levels were associated positively with β-Lap and negatively with EMF. At least in part, the mRNA levels of NQO1 were associated with IC$_{50}$ values of β-Lap in designed treatments. There is a negative association between mRNA levels of NQO1 and IC$_{50}$ values of β-Lap but not NQO2.

Exposure to electromagnetic field (EMF) induces physiological changes in organism that are observed at different levels—from biochemical processes to behavior. In this study, we evaluated the effect of EMF exposure (50 Hz, 7 mT) on cockroach's response to noxious heat, measured as the latency to escape from high ambient temperature. We also measured the levels of lipid peroxidation and glutathione content as markers of oxidative balance in cockroaches exposed to EMF. Our results showed that exposure to EMF for 24, 72 h and 7 days significantly increases the latency to escape from noxious heat. Malondialdehyde (MDA) levels increased significantly after 24-h EMF exposure and remained elevated up to 7 days of exposure. Glutathione levels significantly declined in cockroaches exposed to EMF for 7 days. These results demonstrate that EMF exposure is a considerable stress factor that affects oxidative state and heat perception in American cockroach.

The present investigation was conducted to understand the influence of long-term exposure of rats to extremely low frequency magnetic fields (ELF-MF), focusing on oxidative stress (OS) on different regions of rat's brain. Male Wistar rats (21-day-old) were exposed to ELF-MF (50 Hz; 50 and 100 µT) for 90 days continuously; hippocampal, cerebellar and cortical regions from rats were analyzed for (i) reactive oxygen species (ROS), (ii) metabolites indicative of OS and (iii) antioxidant enzymes. In comparison to control group rats, the rats that were continuously exposed to ELF-MF caused OS and altered glutathione (GSH/GSSG) levels in dose-dependent manner in all the regions of the brain. Accumulation of ROS, lipid peroxidation end products and activity of superoxide dismutase in different regions was in the descending order of cerebellum < hippocampus < cortex. Decrement in GSH/GSSG levels and increment in glutathione peroxidase activity were in the descending order of hippocampus < cerebellum < cortex. The continuous exposure to ELF-MF caused OS in all the examined regions of brain more significantly at 100 µT than at 50 µT. Varied influences observed in different regions of the brain, as documented in this study, may contribute to altered metabolic patterns in its related regions of the central nervous system, leading to aberrant neuronal functions.

Epidemiological studies suggest a correlation between exposure to low-level extremely low-frequency (ELF) magnetic fields (MF) and certain cancers and neurodegenerative diseases. Experimental studies have not provided any mechanism for such effects, although at flux density levels significantly higher than the ones encountered in epidemiological studies, radical homoeostasis and levels of stress response proteins can be affected. Here, we report on the influence of MF exposure (50-Hz sine wave; 1 h; 0.025-0.10 mT;
vertical or horizontal MF exposure direction) on different cellular parameters (proliferation, cell cycle distribution, superoxide radical anion, and HSP70 protein levels) in the human leukaemia cell line K562. The positive control heat treatment (42 degrees C, 1 h) did not affect either cell proliferation or superoxide radical anion production but caused accumulation of cells in the G2 phase and increased the stress protein HSP70. MF exposure (0.10 mT, 1 h) did not affect either cell cycle kinetics or proliferation. Both vertical and horizontal MF exposures for 1 h caused significantly and transiently increased HSP70 levels (>twofold), at several flux densities, compared to sham controls and also compared to heat treatment. This exposure also increased (30-40%) the levels of the superoxide radical anion, comparable to the positive control PMA. Addition of free radical scavengers (melatonin or 1,10-phenanthroline) inhibited the MF-induced increase in HSP70. In conclusion, an early response to ELF MF in K562 cells seems to be an increased amount of oxygen radicals, leading to HSP70 induction. Furthermore, the results suggest that there is a flux density threshold where 50-Hz MF exerts its effects on K562 cells, at or below 0.025 mT, and also that it is the MF, and not the induced electric field, which is the active parameter.

The aim of this study was to test the hypothesis that the "radical pair mechanism" (magnetic field effect on recombination rate of radical pairs) explains our previous findings indicating that 50 Hz magnetic fields (MF) of about 100 µT modify biological responses to ultraviolet (UV) radiation. In the present study, the effects of 50 Hz MF on cellular oxidative processes induced by UV radiation were investigated. Murine L929 fibroblast cells were exposed to 50 Hz MF of 100 or 300 µT during a 1-h UV exposure or for 24 h before it. The decay kinetics of oxidative reactions were analysed by measuring ultraweak chemiluminescence (photon emissions) of the exposed cells by scintillation counter in the out-of-coincidence mode. No significant MF effects were found. The results do not support the hypothesis that 100-300 µT MF modify biological responses to UV radiation by causing an overall change in oxidative reactions at cellular level.

The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and - p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK
inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.

PURPOSE: The aim of the present study was to evaluate the early effects of acute (2 h) exposure to extremely low frequency electromagnetic fields (ELF-EMF), as well as movement restraint (MR) and the combination of both on the antioxidant systems in the plasma, liver, kidney, and heart of rats. MATERIALS AND METHODS: Twenty-four adult male Wistar rats were divided in two groups, restrained and unrestrained. The restrained animals were confined into an acrylic tube for 120 min. Half of the animals of each group were exposed to ELF-EMF (60 Hz, 2.4 mT) during the period of restriction. Immediately after treatment, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS) were measured in tissues. RESULTS: GSH concentration was significantly lower in the heart of all experimental animals when compared to the control group; furthermore, the decrease was higher in the liver of restrained animals. SOD activity was lower in the plasma of restrained and EMF exposed animals compared to unrestrained rats. There were no significant differences in CAT activity and TBARS levels among all the experimental groups vs. the control group. CONCLUSION: Two hours of 60 Hz EMF exposure might immediately alter the metabolism of free radicals, decreasing SOD activity in plasma and GSH content in heart and kidney, but does not induce immediate lipid peroxidation. Oxidative stress induced by movement restraint was stronger than that produced by EMF.

BACKGROUND AND AIMS: It is generally accepted that electromagnetic fields (EMF) can exert biological effects; however, the mechanisms by which EMF elicits responses are still unknown. The present study was designed to assess the immediate effects of acute EMF exposure, movement restriction, and the combination of both on the antioxidant systems and lipid content in the whole brain of rat. METHODS: Thirty two male Wistar rats were arranged in four groups: control, EMF exposed, movement restrained (MR), and EMF + MR for 2 h. Rats were then sacrificed and their brains analyzed for superoxide dismutase and catalase activities,
reduced glutathione, nitric oxide, total cholesterol, and triacylglycerol levels, as well as plasma corticosterone concentrations. RESULTS: Acute exposure to EMF induces reduction in catalase and superoxide dismutase activities, whereas the combination of EMF + MR also decreases both reduced glutathione and nitric oxide levels. Our results show that the acute exposure to EMF does not induce elevation of stress-hormone corticosterone but impairs the antioxidant status in rat brain. CONCLUSIONS: Plasma corticosterone concentration and antioxidant data indicate that the acute exposure to EMF appears to be a mild stressor that leads to some adaptive responses due to the activation of systems controlling the brain oxidative balance.

BACKGROUND: Exposure to electromagnetic fields can affect human health, damaging tissues and cell homeostasis. Stress modulates neuronal responses and composition of brain lipids. The aim of this study was to evaluate the effects of chronic extremely low frequency electromagnetic field (ELF-EMF) exposure, restraint stress (RS) or both (RS + ELF-EMF) on lipid profile and lipid peroxidation in Wistar rat brain. METHODS: Twenty-four young male Wistar rats were allocated into four groups: control, RS, ELF-EMF exposure, and RS + ELF-EMF for 21 days. After treatment, rats were euthanized, the blood was obtained for quantitate plasma corticosterone concentration and their brains were dissected in cortex, cerebellum and subcortical structures for cholesterol, triacylglycerols, total free fatty acids, and thiobarbituric acid reactive substances (TBARS) analysis. In addition, fatty acid methyl esters (FAMEs) were identified by gas chromatography. RESULTS: Increased values of plasma corticosterone were found in RS and ELF-EMF exposed groups (p < 0.05), this effect was higher in RS + ELF-EMF group (p < 0.05, vs. control group). Chronic ELF-EMF exposure increased total lipids in cerebellum, and total cholesterol in cortex, but decreased polar lipids in cortex. In subcortical structures, increased concentrations of non-esterified fatty acids were observed in RS + ELF-EMF group. FAMEs analysis revealed a decrease of polyunsaturated fatty acids of cerebellum and increases of subcortical structures in the ELF-EMF exposed rats. TBARS concentration in lipids was increased in all treated groups compared to control group, particularly in cortex and cerebellum regions. CONCLUSIONS: These findings suggest that chronic exposure to ELF-EMF is similar to physiological stress, and induce changes on brain lipid profile.

In this manuscript, data demonstrating the magnetic sensitivity of human umbilical vein endothelial cells (HUVECs) is presented. The effects of low level fields (LLF; 0.2-1 µT), 30 and 120 µT magnetic fields on the proliferation of endothelial cells were investigated. Primary HUVECs were cultured and exposed to the distinct magnetic conditions in the same incubator. Although cell numbers were slightly affected between 30 and 120 µT magnetic fields, reducing the magnetic field to low levels clearly inhibited proliferation. The rationale of introducing LLF is to elucidate a possible mechanism of interaction. Small differences of 30 µT reduce endothelial cell numbers significantly. The addition of free radical scavenger superoxide dismutase suppressed the enhanced proliferation caused by 120 µT static magnetic fields. It is proposed that the static magnetic field interacts with endothelial cells via a free radical mechanism.

Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 µT to 2 µT on the modulation of hydrogen peroxide (H(2)O(2)) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 µT-60 µT). Reduction of the Earth's magnetic field suppressed H(2)O(2) production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies.

Experimental autoimmune encephalomyelitis (EAE) reproduces a multiple sclerosis (MS)-like experimental model. The main objective was to evaluate the effect of extremely low-frequency electromagnetic fields (EL-EMF) application, like a paradigm of
transcranial magnetic stimulation (TMS) in the development of EAE. Rats were injected with a single dose of 150 μg of myelin oligodendrocyte glycoprotein (MOG, fragment 35-55) to produce experimental MS. To assess the effect of TMS application in EAE, the rats were treated with TMS (60 Hz and 0.7 mT) for 2 h in the morning, once a day, 5 days a week, during 3 weeks. TMS was applied to the head. The effect of TMS on EAE was evaluated as motor symptoms and, oxidative and cell damage. The data showed that MOG induced motor symptoms as tail paralysis and limb paresis/paralysis, oxidative stress and cell death similar to MS when compared with control animals. Importantly, TMS application attenuated motor symptoms, oxidative and cell damage, whereas it increased antioxidant system. Our findings suggest that: (i) MOG reproduces an experimental model of MS characterised by oxidative and cell damage; and (ii) TMS application decreases oxidative stress and cell death induced by MOG.

The effects of transcranial magnetic stimulation (TMS), natalizumab (nata), dimethyl fumarate (DMF) and dexamethasone (DEX) on clinical score and oxidative stress produced by a single dose of myelin oligodendrocyte glycoprotein (MOG) in tail of Dark Agouti rats was studied. TMS (60Hz and 0.7 mT), nata (5mg/kg), DMF (15mg/kg) and DEX (300μg/kg) was applied for 21 after the administration of MOG (150μg). We estimated clinical score, as well as lipid peroxides, carbonylated proteins and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio content in brain, spinal cord and blood. MOG triggered significant increase in clinical score and in the levels of lipid peroxides and carbonylated proteins levels, but reduced GSH/GSSG ratio in brain, spinal cord and blood. Both TMS and clinical treatments, although TMS more significantly, decreased the changes caused by MOG administration. These results support the antioxidant and neuroprotective action of TMS, as well as an activity higher than other clinical treatments.

In the last decades, different transcranial magnetic stimulation protocols have been developed as a therapeutic tool against neurodegenerative and psychiatric diseases, although the biochemical, molecular and cellular mechanisms underlying these effects are not well known. Recent data show that those magnetic stimulation protocols showing beneficial effects could trigger an anti-oxidant action that would favour, at least partially, their therapeutic effect. We have aimed to review the molecular effects related to oxidative damage induced by this therapeutic strategy, as well as from them addressing a broader definition of the anti-oxidant concept.

BACKGROUND: Molecular mechanisms of interaction between cells and extremely low frequency magnetic fields (ELF-MFs) still represent a matter of scientific debate. In this paper, to identify the possible primary source of oxidative stress induced by ELF-MF in SH-SY5Y human neuroblastoma cells, we estimated the induced electric field and current density at the cell level. METHODS: We followed a computational multiscale approach, estimating the local electric field and current density from the whole sample down to the single cell level. The procedure takes into account morphological modeling of SH-SY5Y cells, arranged in different topologies. Experimental validation has been carried out: neuroblastoma cells have been treated with Diphenyleneiodonium (DPI) -an inhibitor of the plasma membrane enzyme NADPH oxidase (Nox)- administered 24 h before exposure to 50 Hz (1 mT) MF. RESULTS: Macroscopic and microscopic dosimetric evaluations suggest that increased current densities are induced at the plasma membrane/extra-cellular medium interface; identifying the plasma membrane as the main site of the ELF-neuroblastoma cell interaction. The in vitro results provide an experimental proof that plasma membrane Nox exerts a key role in the redox imbalance elicited by ELF, as DPI treatment reverts the generation of reactive oxygen species induced by ELF exposure. GENERAL SIGNIFICANCE: Microscopic current densities induced at the plasma membrane are likely to play an active physical role in eliciting ELF effects related to redox imbalance. Multiscale computational dosimetry, supported by an in vitro approach for validation, is proposed as the innovative and rigorous paradigm to unveil mechanisms underlying the complex ELF-MF interactions.

Environmental exposure to electromagnetic fields is potentially carcinogenic. The radical pair mechanism is considered the most feasible mechanism of interaction between weak magnetic fields encountered in our environment and biochemical systems. Radicals are abundant in biology, both as free radicals and reaction intermediates in enzyme mechanisms. The catalytic cycles of some flavin-dependent enzymes are either known or potentially involve radical pairs. Here, we have investigated the magnetic field sensitivity of a number of flavoenzymes with important cellular roles. We also investigated the magnetic field sensitivity of a model system involving stepwise reduction of a flavin analogue by a nicotinamide analogue-a reaction known to proceed via a radical pair. Under the experimental conditions used, magnetic field sensitivity was not observed in the reaction kinetics from stopped-flow
measurements in any of the systems studied. Although widely implicated in radical pair chemistry, we conclude that thermally driven, flavoenzyme-catalysed reactions are unlikely to be influenced by exposure to external magnetic fields.

Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p < 0.05). The Cordyceps daily cotreatment alleviated the testicular damage by EMP exposure, increased spermatozoa formation, and reduced apoptotic spermatogenic cells. These observations warrant further preclinical and clinical studies as an innovative approach for potential protection against electromagnetic radiation in the current age of networked society and digital citizenship.

PURPOSE: To test the effects of short term exposure of aquatic organisms to electric field (EF) with negligible magnetic component. MATERIALS AND METHODS: We built a plate capacitor that served as a source of EF of strengths that can be found in nature near transmission lines. We exposed two cultured protist species Euglena viridis and Paramecium caudatum to EFs for 24 hours and monitored their abundance, morphology, intracellular superoxide anion (by DHE), hydrogen peroxide by (H₂DCF) and MDA
contents, catalase (CAT) and superoxide dismutase (SOD) activity. RESULTS: We found that even short term exposure to low strength EF causes changes in population abundance, morphology and oxidative stress response in both species. As the EF strength increased, abundance of both species decreased. However, at weaker EFs fission rates were seemingly promoted. We noted decrease in size in both organisms in directions perpendicular to their fission planes correlated with EF strength. DHE and H$_2$DCF fluorescence intensity and SOD activity were higher in organisms exposed to the stronger EFs. CONCLUSIONS: We suggest that the electric component of the field, rather than the magnetic, is the main cause of all the noted effects. As a result, aquatic organisms should be given greater importance in studies assessing the effects of EMFs in spite of attenuating effects of water to EF strengths.

One of the main sites of the magnetic fields influence on living cells is the cell cycle. The intensity of this influence however, varies depending on the cell type and the duration of the treatment. Suspension of cultured tobacco cells (Nicotiana tabacum cv. Barley 21) were synchronized via sucrose starvation at their stationary growth phase. The cells were then exposed to 0.2 m T SMF up to 24 h. The progression of different cell cycle phases was monitored through flow cytometry in a time course manner. Expression of cell cycle controlling genes and amounts of certain signaling molecules were measured as well. Exposure to SMF delayed G1.S transition which was accompanied by decrease of cyclin-dependent kinases A (CDK A) and D-type cyclin, but an increase in the adenylyl cyclase (AC), transcription factor E2F, retinoblastoma protein (Rbp), and CDK-inhibitor protein 21 (p21) transcript accumulation. Exposure to SMF also increased the contents of nitric oxide (NO), hydrogen peroxide (H$_2$O$_2$), and salicylic acid (SA), compared to the control group. The results suggest a signaling pathway triggered by SMF starting from accumulation of NO and H$_2$O$_2$ followed by downstream events including the increase of cyclic nucleotides and subsequent decrease of both CDKA and CycD.

Some effects of low-intensity magnetic fields on the concentration of radicals and their influence on cellular functions are reviewed. These fields have been implicated as a potential modulator of radical recombination rates. Experimental evidence has revealed a tight coupling between cellular function and radical pair chemistry from signaling pathways to damaging oxidative processes. The effects of externally applied magnetic fields on biological systems have been extensively studied, and the observed effects lack sufficient mechanistic understanding. Radical pair chemistry offers a reasonable explanation for some of the molecular effects of low-intensity magnetic fields, and changes in radical concentrations have been observed to modulate specific cellular functions. Applied external magnetic fields have been shown to induce observable cellular changes such as both inhibiting and accelerating cell growth. These and other mechanisms, such as cell membrane potential modulation, are of great interest in cancer research due to the variations between healthy and deleterious cells. Radical concentrations demonstrate similar variations and are indicative of a possible causal relationship.
Radicals, therefore, present a possible mechanism for the modulation of cellular functions such as growth or regression by means of applied external magnetic fields.

BACKGROUND/AIMS: The purpose of this study was to provide information about the in vitro neuritogenesis during cell exposure to extremely low frequency electromagnetic fields (ELF-EMFs) of different intensities and durations using pheochromocytoma-derived cell line (PC12 cells) as neuronal model. METHODS: Proliferative rates and neuritogenesis were tested by colorimetric assay and morphological analysis, respectively; reactive oxygen species (ROS) levels and intracellular Ca(2+) variations monitored using single cell videomicroscopy. RESULTS: The long-lasting ELF-EMF exposure (0.1-1.0 mT) did not appear to significantly affect the biological response (proliferation and neuritogenesis). However, during the acute ELF-EMF exposure (30 min), in undifferentiated PC12 cells, there were increased ROS levels and decreased catalase activity, that, conversely, resulted increased after chronic exposure (7 days) at 1.0 mT. Acute exposure (0.1-1.0 mT) affected the spontaneous intracellular Ca(2+) variations in undifferentiated cells, in which basal intracellular Ca(2+) resulted increased after chronic exposure. In addition acute exposure affected cell response to a depolarizing agent, while basal membrane potential was not changed. CONCLUSION: Even if further studies remain necessary to identify the ROS/intracellular Ca(2+)cross-talking pathway activated by ELF-EMF exposure, we support the hypothesis that ROS and Ca(2+) could be the cellular "primum movens" of the ELF-EMF induced effects on biological systems.

The biological effects of electric and magnetic fields, which are ubiquitous in modern society, remain poorly understood. Here, we applied a single-cell approach to study the effects of short-term exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on muscle cell differentiation and function using C2C12 cells as an in vitro model of the skeletal muscle phenotype. Our focus was on markers of oxidative stress and calcium (Ca(2+)) handling, two interrelated cellular processes previously shown to be affected by such radiation in other cell models. Collectively, our data reveal that ELF-EMFs (1) induced reactive oxygen species production in myoblasts and myotubes with a concomitant decrease in mitochondrial membrane potential; (2) activated the cellular detoxification system, increasing catalase and glutathione peroxidase activities; and (3) altered intracellular Ca(2+)homeostasis, increasing the spontaneous activity of myotubes and enhancing cellular reactivity to a depolarizing agent (KCl) or an agonist.
(caffeine) of intracellular store Ca(2+) channels. In conclusion, our data support a possible link between exposure to ELF-EMFs and modification of the cellular redox state, which could, in turn, increase the level of intracellular Ca(2+) and thus modulate the metabolic activity of C2C12 cells.

Proliferation of human umbilical vein endothelial cells was stimulated by a nearly vertical 60 or 120 μT static magnetic field (MF) in comparison to cells that were shielded against MFs. When the static field was combined with an extremely low frequency (ELF) MF (18 Hz, 30 μT), proliferation was suppressed by a horizontal but not by a vertical ELF field. As these results suggested that the effects of an ELF MF depend on its direction in relation to the static MF, independent experiments were carried out to confirm such dependence using 50 Hz MFs and a different experimental model. Cytosolic superoxide level in rat glioma C6 cells exposed in the presence of a nearly vertical 33 μT static MF was increased by a horizontal 50 Hz, 30 μT MF, but not affected by a vertical 50 Hz MF. The results suggest that a weak ELF MF may interact with the static geomagnetic field in producing biological effects, but the effect depends on the relative directions of the static and ELF MFs.

PURPOSE: Synergistic effects between cellular oxidative stress and magnetic fields may explain the adverse biological effects of 50/60 Hz magnetic fields. To determine whether this hypothesis holds in macrophage RAW264 cells, we measured DNA single-strand breaks (SSB), cell viability, and nitric oxide (NO) production in cells with or without exposure to 0.5-mT, 50-Hz magnetic fields for 24 h and with or without simultaneous stimulation via the bacterial endotoxin, lipopolysaccharide (LPS).

MATERIALS AND METHODS: Macrophages stimulated with 10 ng/ml LPS for 1 h were exposed to or not exposed to a magnetic field and were then subjected to (1) the alkaline comet assay to measure SSBs, (2) trypan-blue exclusion assay for cell viability, and (3) measurements of NO for evaluation of oxidative stress. RESULTS: The 50-Hz magnetic field enhanced DNA SSB and decreased cell viability only in the LPS-stimulated macrophages in which NO production was greatly enhanced. The magnetic field alone did not alter NO production. CONCLUSION: Co-stimulation of the cell with LPS and a 50-Hz magnetic field promoted SSB and lowered cell viability, but these were not mediated by LPS-induced NO production.

The effect of pulsed magnetic fields on nitric oxide synthase (NOS) activity in the rat brain was investigated. Sprague-Dawley rats (male, 200-250 g body weight) brain were dissected regionally, and the crude enzyme solutions were treated with pulsed DC, AC or static DC magnetic fields at 0 degrees C for 1 h. After exposure, NOS activity was measured as nitrite and nitrate levels generated from incubation with arginine, CaCl(2) and beta-nicotinamide adenine dinucleotide phosphate. Under these experimental conditions, neither AC nor static DC field treatment showed any significant change in NOS activity. A significant increase in NOS activity was observed in the cerebellum (111.2+/−2.0%, P<0.05, five separate experiments) for a 1 Gauss (0.1 mT) pulsed DC field. Under the same experimental condition, only a slight change or no effect was observed in the hippocampus, cortex, medulla oblongata, hypothalamus, striatum and midbrain. These studies suggest that pulsed magnetic fields result in a different effect on NOS activity in the cerebellum of the rats.

Biological systems can respond to a wide range of static magnetic fields (SMF). Some of these responses seem to be mediated partly through free radical reactions. For example, in magnetic sense and navigation using the geomagnetic field, one of the most promising mechanisms for explaining magnetic compass is "a radical pair mechanism". Biological free radicals are most commonly oxygen or nitrogen based with an unpaired electron, leading to the terms "reactive oxygen species (ROS)" or "reactive nitrogen species (RNS)". When applying SMF to medical treatment, coupling SMF exposure with possible chemotherapy of cancers is a novel fascinating area that SMF could enhance agent-induced ROS production against tumors. In addition, one of the potent mechanisms of SMF effects on hemodynamics and blood pressure has sometimes been linked to nitric oxide pathway. However, health and environmental concerns have been raised because the SMF effects on oxidative stress leading to genetic mutation and apoptosis/necrosis have been found. It seems to take place from free radical generation.

It is well known that physiological functions and pathological conditions of cells and tissues can be influenced not only by chemical molecules, but also by physical stimuli such as electromagnetic waves. In particular, epidemiological studies suggest possible associations between exposure to electromagnetic fields and an increased risk of tumors and neurodegenerative disorders, such as
Alzheimer's disease. However, depending on the dose and on the length of treatment, the electromagnetic stimuli can be harmful or induce a cytoprotective cellular response, suggesting a possible application in medical therapy. In this study, under a tissue engineering viewpoint, we investigated the effects of an electromagnetic wave (magnetic field intensity, 2 mT; frequency, 75 Hz) on a neuronal cellular model characterized by the overexpression of the amyloid precursor protein (APP). After a prolonged electromagnetic treatment, lower mitochondrial activity and proliferation rate, resulting in a higher cellular quiescence, were observed. Focusing on the stress and oxidative pathways, we detected an overall increase of two fundamental proteins, the chaperone heat shock protein HSP70 and the free radical scavenger superoxide dismutase-1 enzyme (SOD-1). Interestingly, we found that the electromagnetic stimulation promotes the nonamyloidogenic processing of APP through an increased expression of the α-secretase ADAM10 and an enhanced release of the soluble neurotrophic factor sAPPα (a product of the ADAM10-mediated cleavage of APP). In conclusion, these findings suggest that the electromagnetic stimulus, if properly administered in terms of dose and timing, is able to induce a cytoprotective response in the cell. Moreover, these results suggest a possible use of this particular physical stimulation to improve the functional capability of the cells to face noxae.

Electromagnetic fields (EMFs) have been linked to increased risk of cancers and neurodegenerative diseases; however, EMFs can also elicit positive effects on biological systems, and redox status seems crucially involved in EMF biological effects. This study aimed to assess whether a short and repeated pulsed EMF (PEMF) could trigger adaptive responses against an oxidative insult in a neuronal cellular model. We found that a 40 min overall (four times a week, 10 min each) pre-exposure to PEMF did not affect major physiological parameters and led to a significant increase of Mn-dependent superoxide dismutase activity in the human neuroblastoma SH-SY5Y cell line. In addition, we found PEMF-pre-exposed cells exhibited decreased reactive oxygen species production following a 30 min H2 O2 challenge, with respect to non pre-exposed cells. Our findings might provide new insights on the role played by short and repeated PEMF stimulations in the enhancement of cellular defenses against oxidative insults. Although studies in normal neuronal cells would be useful to further confirm our hypothesis, we suggest that specific PEMF treatments may have potential biological repercussions in diseases where oxidative stress is implicated.

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1-13 kV/cm) was assessed by oxidation of 2',7'-dichlorodihydrofluoresein (H(2)DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H(2)DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2',7'-dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat cells, but remained stable in nsPEF-resistant U937 cells. In cell-free media, nsPEF facilitated the conversion of H(2)DCF into DCF. This effect was not related to heating and was reduced by catalase, but not by mannitol or superoxide dismutase. Formation of H(2)O(2) in nsPEF-treated media was confirmed by increased oxidation of Amplex Red. ROS increase within individual cells exposed to nsPEF was visualized by oxidation of DHE. We conclude that nsPEF can generate both extracellular (electrochemical) and intracellular ROS, including H(2)O(2) and possibly other species. Therefore, bioeffects of nsPEF are not limited to electropermeabilization; concurrent ROS formation may lead to cell stimulation and/or oxidative cell damage.

Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) is cosmopolitan pest of stored products. The effect of strong magnetic fields (MFs) on DNA damage and oxidative stress on larvae stage of E. kuehniella was assessed. Antioxidant enzyme systems, which include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), and malondialdehyde (MDA), the end product of lipid peroxidation as a result of strong MF intoxication that might occur in the larvae tissue, were evaluated. A simple technique of single-cell gel electrophoresis (DNA comet assay) enabled a quick detection of MF treatment on larvae. The larvae were exposed in a 1.4-Tesla (T) MF from a DC power supply at 50 Hz for different time periods (3, 6, 12, 24, 48, and 72 h). MFs caused increasing DNA damage and demonstrated using the comet assay with its parameters including tail DNA%, tail length and tail moment. DNA damage at increasing exposure times were significantly larger than the control group (p < 0.05). These parameters were detected using BS 200 ProP with image analysis software. SOD, CAT, GPx, and GST activities decreased and MDA level increased in the MF-treated group in larvae tissue compared to control group for increasing exposure times at 1.4 T (p < 0.05). In our investigation, we showed that MFs caused oxidative stress and proved to be DNA damage as revealed by the comet assay. MFs may be used to determine potential toxic effects as a control agent against E. kuehniella larvae.

Even though the inducing effect of electromagnetic fields (EMF) on the neural differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) is distinctive, the underlying mechanism of differentiation remains unclear. To find out the signaling pathways involved in the neural differentiation of BM-MSCs by EMF, we examined the CREB phosphorylation and Akt or ERK activation as an upstream of CREB. In hBM-MSCs treated with ELF-EMF (50 Hz, 1 mT), the expression of neural markers such as NF-L, MAP2, and NeuroD1 increased at 6 days and phosphorylation of Akt and CREB but not ERK increased at 90 min in BM-MSCs. Moreover, EMF increased phosphorylation of epidermal growth factor receptor (EGFR) as an upstream receptor tyrosine kinase of PI3K/Akt at 90 min. It has been well documented that ELF-MF exposure may alter cellular processes by increasing intracellular reactive oxygen species (ROS) concentrations. Thus, we examined EMF-induced ROS production in BM-MSCs. Moreover, pretreatment with a ROS scavenger, N-acetylcystein, and an EGFR inhibitor, AG-1478, prevented the phosphorylation of EGFR and downstream molecules.

These results suggest that EMF induce neural differentiation through activation of EGFR signaling and mild generation of ROS.

Nitric oxide (NO) is a highly reactive gaseous free radical, which in plants was found to stimulate seed germination and ending of dormancy. Experiments were conducted to study the effect of NO inhibitors sodium tungstate (ST) and Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), NADPH oxidase inhibitor diphenyleneiodonium (DPI) and NO donor sodium nitroprusside (SNP) on untreated and magnetoprimed maize (Zea mays var: GSF-2) seeds. Treatment of maize seeds with these inhibitors inhibited germination related parameters like seedling length, fresh weight, dry weight and vigour indices and α-amylase activity of maize seeds under laboratory conditions, whereas NO donor (SNP) promoted all these parameters. Among 3 different inhibitors used ST was most effective and showed an inhibition in seedling length of 67% and 71% at 1 mM concentration for untreated (UT) and magnetically treated (MT) seeds respectively. Data presented here indicate the involvement of nitric oxide in enhanced germination and seedling growth of magnetoprimed maize seeds. ROS are continuously produced by the cells of germinating seeds and play a positive role in germination of magnetoprimed maize seeds. ROS inhibitor (DPI) inhibited seedling length by 34% and 40% for control and MT seeds respectively. α-amylase activity was also inhibited by all the 3 inhibitors used. It is concluded that NO inhibitors and ROS inhibitor inhibited magnetic field induced promotion of seedling parameters and α- amylase activity of maize seeds.

BACKGROUND: Extremely low frequency (ELF) electromagnetic fields (EMF) are known to produce a variety of biological effects. Clinical studies are ongoing using EMF in healing of bone fractures and skin wounds. However, little is known about the mechanisms of action of ELF-EMF. Several studies have demonstrated that expression and regulation of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) are vital for wound healing; however, no reports have demonstrated a direct action of ELF-EMF in the modulation of these inflammatory molecules in human keratinocytes. OBJECTIVES: The present study analysed the effect of ELF-EMF on the human keratinocyte cell line HaCaT in order to assess the mechanisms of action of ELF-EMF and to provide further support for their therapeutic use in wound healing. METHODS: Exposed HaCaT cells were compared with unexposed control cells. At different exposure times, expression of inducible NOS (iNOS), endothelial NOS (eNOS) and COX-2 was evaluated by Western blot analysis. Modulation of iNOS and eNOS was monitored by evaluation of NOS activities, production of nitric oxide (NO) and O(2)(-) and expression of activator protein 1 (AP-1). In addition, catalase activity and prostaglandin (PG) E(2) production were determined. Effects of ELF-EMF on cell growth and viability were monitored. RESULTS: The exposure of HaCaT cells to ELF-EMF increased iNOS and eNOS expression levels. These ELF-EMF-dependent increased expression levels were paralleled by increased NOS activities, and increased NO production. In addition, higher levels of AP-1 expression as well as a higher cell proliferation rate were associated with ELF-EMF exposure. In contrast, ELF-EMF decreased COX-2 expression, PGE(2) production, catalase activity and O(2)(-) production. CONCLUSIONS: Mediators of inflammation, such as reactive nitrogen and PGE(2), and keratinocyte proliferation are critical for the tissue regenerative processes. The ability of ELF-EMF to upmodulate NOS activities, thus nitrogen intermediates, as well as cell proliferation, and to downregulate COX-2 expression and the downstream intermediate PGE(2), highlights the potential therapeutic role of ELF-EMF in wound healing processes.

Extremely low frequency electromagnetic fields (ELF-EMF) have been found to produce a variety of biological effects. These effects of ELF-EMF depend upon frequency, amplitude, and length of exposure, and are also related to intrinsic susceptibility and responsiveness of different cell types. Although the mechanism of this interaction is still obscure, ELF-EMF can influence cell proliferation, differentiation, cell cycle, apoptosis, DNA replication and protein expression. The aim of this study was to estimate various kinetic constants of catalase, cytochrome P450 and inducible nitric oxide synthase in response to ELF-EMF exposure in human HaCaT and THP-1 cell lines. CNS Neurol Disord Drug Targets. 10(8):936-944, 2011.

Extremely low frequency electromagnetic fields (ELF-EMF) have been found to produce a variety of biological effects. These effects of ELF-EMF depend upon frequency, amplitude, and length of exposure, and are also related to intrinsic susceptibility and responsiveness of different cell types. Although the mechanism of this interaction is still obscure, ELF-EMF can influence cell proliferation, differentiation, cell cycle, apoptosis, DNA replication and protein expression. The aim of this study was to estimate various kinetic constants of catalase, cytochrome P450 and inducible nitric oxide synthase in response to ELF-EMF exposure in human HaCaT and THP-1 cell lines. CNS Neurol Disord Drug Targets. 10(8):936-944, 2011.
human HaCaT and THP-1 cell lines. In order to evaluate the effect of ELF-EMF on the modulation of cellular responses to an inflammatory stimulus, both cell lines were treated with lipopolysaccharide. To the best of our knowledge there is no available report on such type of kinetic study of selected enzymes in response to ELF-EMF in these cell lines. Therefore, the current study may reveal novel mechanism of ELF-EMF biological interaction with the enzymological and hormonal systems of living organisms. These new insights may be important for ELF-EMF application particularly for wound healing, tissue regeneration, Parkinson's and Alzheimer's diseases.

Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are the main determinants of tissue remodeling in both physiological and pathological processes. Metabolic processes, which generate oxidants and antioxidants can be influenced by environmental factors such as electromagnetic fields (EMF). We analyzed the effects of EMF on the activity and expression of MMPs in THP-1 cells. Cells were exposed to a 50 Hz, 1 mT EMF for 24 h and incubated with or without LPS. Our data indicate that THP-1 cells exposed to EMF causes a reduction of anti-oxidant enzyme activity and an enhancement of nitrogen intermediates involving the iNOS pathway. We then analyzed the role of nitration of TIMP-1 in increasing the activity of MMPs in EMF exposed cells. Molecular modeling tools were employed to identify the most plausible sites in the active conformation of TIMP-1; at least two protein sites, Y120 and Y38 and/or Y72 were identified. Reactive nitrogen species (RNS) may affect protein targets, such as TIMP-1, which are crucial for the regulation of MMP activities by oxidation of sulfydryl groups, or by nitration of tyrosine residues. These results may suggest a pathway connecting an imbalance of MMPs and their cognate inhibitor TIMP-1.

AIMS: Extremely low frequency electromagnetic fields (ELF-EMFs) are widely employed in electrical appliances and different equipment such as television sets, mobile phones, computers and microwaves. The molecular mechanism through which ELF-EMFs can influence cellular behavior is still unclear. A hypothesis is that ELF-EMFs could interfere with chemical reactions involving free radical production. Under physiologic conditions, cells maintain redox balance through production of ROS/RNS and antioxidant molecules. The altered balance between ROS generation and elimination plays a critical role in a variety of pathologic conditions including neurodegenerative diseases, aging and cancer. Actually, there is a disagreement as to whether there is a causal or coincidental relationship between ELF-EMF exposure and leukemia development. Increased ROS levels have been observed in
several hematopoietic malignancies including acute and chronic myeloid leukemias. MAIN METHODS: In our study, the effect of ELF-EMF exposure on catalase, cytochrome P450 and inducible nitric oxide synthase activity and expression by Western blot analysis in myelogenous leukemia cell line K562 was evaluated. KEY FINDINGS: A significant modulation of iNOS, CAT and Cyt P450 protein expression was recorded as a result of ELF-EMF exposure in both phorbol 12-myristate 13-acetate (PMA)-stimulated and non-stimulated cell lines. Modulation in kinetic parameters of CAT, CYP-450 and iNOS enzymes in response to ELF-EMF indicates an interaction between the ELF-EMF and the enzymological system. SIGNIFICANCE: These new insights might be important in establishing a mechanistic framework at the molecular level within which the possible effects of ELF-EMF on health can be understood.

There is a large body of experimental data demonstrating various effects of magnetic field (MF) on plants growth and development. Although the mechanism(s) of perception of MF by plants is not yet elucidated, there is a possibility that like other stimuli, MF exerts its effects on plants by changing membrane integrity and conductance of its water channels, thereby influencing growth characteristics. In this study, the seeds of wheat (Triticum aestivum L. cv. Kavir) were imbibed in water overnight and then treated with or without a 30-mT static magnetic field (SMF) and a 10-kHz electromagnetic field (EMF) for 4 days, each 5 h. Water uptake of seeds reduced 5 h of the treatment with EMF but did not show changes in SMF treatment. Exposure to both magnetic fields did not affect germination percent of the seeds but increased the speed of germination, compared to the control group. Treatment with EMF significantly reduced seedling length and subsequently vigor index I, while SMF had no effects on these parameters. Both treatments significantly increased vigor index II, compared to the control group. These treatments also remarkably increased catalase activity and proline contents of seedlings but reduced the activity of peroxidase, the rate of lipid peroxidation and electrolyte leakages of membranes. The results suggest promotional effects of EMFs on membrane integrity and growth characteristics of wheat seedlings.

This study shows that a non-thermal pulse-modulated RF signal (PRF), configured to modulate calmodulin (CaM) activation via acceleration of Ca(2+) binding kinetics, produced an immediate nearly 3-fold increase in nitric oxide (NO) from dopaminergic MN9D cultures (P < 0.001). NO was measured electrochemically in real-time using a NO selective membrane electrode, which showed the PRF effect occurred within the first seconds after lipopolysaccharide (LPS) challenge. Further support that the site of action of PRF involves CaM is provided in human fibroblast cultures challenged
with low serum and exposed for 15 min to the identical PRF signal. In this case a CaM antagonist W-7 could be added to the culture 3 h prior to PRF exposure. Those results showed the PRF signal produced nearly a two-fold increase in NO, which could be blocked by W-7 (P < 0.001). To the authors’ knowledge this is the first report of a real-time effect of non-thermal electromagnetic fields (EMF) on NO release from challenged cells. The results provide mechanistic support for the many reported bioeffects of EMF in which NO plays a role. Thus, in a typical clinical application for acute post operative pain, or chronic pain from, e.g., osteoarthritis, EMF therapy could be employed to modulate the dynamics of NO via Ca/CaM-dependent constitutive nitric oxide synthase (cNOS) in the target tissue. This, in turn, would modulate the dynamics of the signaling pathways the body uses in response to the various phases of healing after physical or chemical insult or injury.

OBJECTIVE: It has been shown that oxidative stress plays an important role in development of noise induced hearing loss. Since static magnetic fields (SMF) exposure may alter dynamics of oxidative processes in the tissue, the aim of the study was to assess the influence of SMF on noise-induced alteration in the cochlear level of reactive oxygen species (ROS) and hearing thresholds.

MATERIALS AND METHODS: Auditory brainstem response (ABR), lipid peroxidation (LPO) levels, super-oxide dismutase (SOD) activity and catalase activity were assessed in the cochlea prior to, and at five time-points over two weeks following exposure of C57BL/6 mice to 8h, 119 dB SPL, 4 kHz octave band noise. RESULTS: The ABR indicated no permanent functional damage due to noise exposure either for the 4 kHz and 8 kHz SMF-exposed group or for animals not exposed to SMF. However, significant differences in LPO level, catalase and SOD activity between animals exposed to noise and SMF and those exposed to noise only were observed. CONCLUSIONS: The results suggest that SMF causes an increase in ROS level in the cochlea after noise exposure and, at the same time, it speeds up activation of antioxidative enzymes.

The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2’7’-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the
Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.

The aim of this study was to determine the effect of gradient static magnetic field (SMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. Blood samples collected from healthy individuals were incubated in an inhomogeneous SMF (in a south or north pole of the field) for 15, 30 or 45 minutes. The maximum value of induction (B_{max}) amounted to ≈ 60 mT. To determine the strength of the ROS production, dihydrorhodamine (123DHR) as fluorophore and phorbol 12-myristate 13-acetate (PMA) as respiratory burst stimulator were used. 123DHR oxidation by ROS was measured by flow cytometry. The exposure of blood samples to SMF induced statistically significant changes in ROS production in unstimulated and PMA-stimulated neutrophils. The observed effects were highly correlated with the exposure time and depended on the orientation of the field. Although intracellular mechanisms underlying such interactions are not thoroughly understood, it could be presumed that SMF affects ROS metabolic oscillations and their formation and inactivation. This study emphasizes the importance of proper adjustment of exposure time to SMF for any potential therapeutic applications.

There is a growing concern if the power-line frequency (50/60 Hz) magnetic field (termed in this paper ELF-MF) increases cancer risks. Since one of the major causes of cancer is cellular oxidative stress, whether the ELF-MF increases the oxidative stress is a central problem in the studies on the biological effect of the ELF-MF. Here, we have investigated the effect of 50-Hz sinusoidal magnetic field on the production of O_2^-, the expression of heat shock protein (HSP) 70 and the mitochondrial membrane potential in cell line macrophage RAW264 cells. Macrophages were exposed to or not exposed to 0.1-mT or 0.5-mT, 50-Hz sinusoidal magnetic field and were subjected to (1) assay for O_2^-, (2) analysis of the expression of HSP70, and (3) measurement of the mitochondrial membrane potential with a fluorescent indicator. The 50-Hz magnetic field enhanced production of O_2^- and the expression of HSP70,
both of which are consistent with previous studies. The exposure to 50-Hz magnetic field decreased mitochondrial membrane potential indicating the diminished activity of mitochondria. The uncoupler of mitochondrial function, carbonyl cyanide p-trifluoromethoxyphenylhydrazone diminished the membrane potential, as expected. On the other hand, it increased the production of O_2^-. The results collectively suggest that the 50-Hz magnetic field diminished the mitochondrial membrane potential, which led to the increase in the production of O_2^- and the expression of HSP70 protein.

This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF-exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty-four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis.

The present study aimed to evaluate the association between whole body exposure to extremely low frequency magnetic field (ELF-MF) and genotoxic, cytotoxic hazards in brain and bone marrow cells of newborn rats. Newborn rats (10 days after delivery) were exposed continuously to 50 Hz, 0.5 mT for 30 days. The control group was treated as the exposed one with the sole difference that the rats were not exposed to magnetic field. Comet assay was used to quantify the level of DNA damage in isolated brain cells. Also bone marrow cells were flushed out to assess micronucleus induction and mitotic index. Spectrophotometric methods were used to measure the level of malondialdehyde (MDA) and the activity of glutathione (GSH) and superoxide dismutase (SOD). The results showed a significant increase in the mean tail moment indicating DNA damage in exposed group ($P < 0.01, 0.001, 0.0001$). Moreover ELF-MF exposure induced a significant ($P < 0.01, 0.001$) four folds increase in the induction of micronucleus and about three folds.
increase in mitotic index (P < 0.0001). Additionally newborn rats exposed to ELF-MF showed significant higher levels of MDA and SOD (P < 0.05). Meanwhile ELF-MF failed to alter the activity of GSH. In conclusion, the present study suggests an association between DNA damage and ELF-MF exposure in newborn rats.

Knowledge about the relationship between exposure to extremely low-frequency (ELF) EMF and formation (or neutralization) of free radicals in the living cells is limited. Studies performed on animals and plants have shown conflicting effects on the relation between EMF and oxidative stress. Very few experiments have been performed on humans. The present study reports on the effects of an ELF magnetic therapy device (Seqex) on oxidative scale in humans. This device supplies complex magnetic signals with specific choices of frequency, intensity, and shape that are based on Liboff's ion cyclotron resonance hypothesis. Thirty-two healthy volunteers were treated using the Seqex cycle. A quantitative determination of oxidative stress was obtained at three time points by measuring malondialdehyde (MDA) concentrations in peripheral blood before and after the cycle and one month following completion of the cycle. A highly significant reduction in mean MDA (53.8%, p = 0.0002) was found at the end of the treatment. One month later the mean MDA had again risen, but there was still a significant overall reduction of 15.6% (p = 0.010) compared to original values.

This study was aimed to evaluate antioxidant response of parsley cells to 21 ppm iron and static magnetic field (SMF; 30 mT). The activity of catalase (CAT) and ascorbate peroxidase (APX) and the contents of malonyldialdehyde, iron and ferritin were measured at 6 and 12 h after treatments. Exposure to SMF increased the activity of CAT in treated cells, while combination of iron and SMF treatments as well as iron supply alone decreased CAT activity, compared to that of control cells. Combination of SMF with iron treatment reduced iron content of the cells and ameliorated mal effect of iron on CAT activity. All treatments reduced APX activity; however, the content of total ascorbate increased in response to iron and SMF+iron. The results showed that among the components of antioxidant system of parsley cells, enhanced activity of CAT in SMF-treated cells and increase of ascorbate in SMF+Fe-treated ones were responsible for the maintenance of membranes integrity. Ferritin contents of SMF- and SMF+Fe-treated cells also decreased significantly 12 h after treatments, compared to those of the control cells. These results cast doubt on the proposed functions of ferritin as a putative reactive oxygen species detoxifying molecule.

(E) (VO, CE, IX) Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One. 9(2):e88921, 2014.
Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7(th) (immediate effect of ELF-MF) and 14(th) day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7(th) and 14(th) day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7(th) day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14(th) day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. **Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain.** The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia.

The purpose of this study was to investigate whether overnight exposure to 1 mT-50 Hz extremely low-frequency sinusoidal electromagnetic field (EMF) affects the expression and production of inducible nitric oxide synthase (iNOS) and monocyte chemotactic protein-1 (MCP-1) in human monocytes. RT-PCR and Western blot analysis demonstrate that EMF exposure affects the expression of iNOS and MCP-1 in cultured human mononuclear cells at the mRNA level and protein synthesis. Interestingly, the effects of EMF exposure clearly differed with respect to the potentiation and inhibition of iNOS and MCP-1 expression. Whereas iNOS was down-regulated both at the mRNA level and at the protein level, MCP-1 was up-regulated. These results provide helpful information regarding the EMF-mediated modulation of the inflammatory response in vivo. However, additional studies are necessary to demonstrate that EMF acts as a nonpharmacological inhibitor of NO and inducer of MCP-1 in some diseases where the balance of MCP-1 and NO may be important.

Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expression of NOS and O2-, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT activity and a rise in O2- levels. Together these studies support the further evaluation of ELF-EMF exposure in cellular and in vivo preclinical models to define mechanisms potentially impacted in humans.

Pro-oxidant effects of extremely low frequency (ELF) 50-Hz magnetic fields were investigated in the land snail Helix aspersa exposed both in short-term laboratory treatments and under field conditions by maintaining the organisms in the proximity of a power line for up to 2 months. Oxidative perturbations were investigated as individual antioxidants (catalase, glutathione reductase, glutathione S-transferases, and total glutathione) and total scavenging capacity toward peroxyl radicals and hydroxyl radicals. Accumulation of lipid peroxidation products, destabilization of lysosomal membranes, and loss of DNA integrity were also evaluated as markers of cell damage. The overall results indicated an oxidative challenge caused by ELF magnetic fields with particularly prompt and sensitive responses for catalase, glutathione reductase, and the overall capability to neutralize peroxyl radicals. Cell injuries occurred to different extents according to duration and intensity of electromagnetic exposure and confirmed complex cause-effect relationships between pro-oxidant factors, efficiency of antioxidant defenses, and the onset of oxidative toxicity. This study highlights the
importance of a multimarker approach for detecting a wide panel of biological responses, the necessity of investigating the long-term effects of early oxidative responses, and the role of ELF in enhancing susceptibility to other forms of pathologies or diseases.

Our findings show a significant increase of free radical production after exposure to 50 Hz electromagnetic fields at a flux density of 1 mT to mouse bone marrow-derived (MBM) promonocytes and macrophages, indicating the cell-activating capacity of extremely low frequency magnetic fields (ELF-MF). We demonstrate that after exposure to ELF-MF mainly superoxide anion radicals were produced, both in MBM macrophages (33%) and also in their precursor cells (24%). To elucidate whether NADPH- or NADH-oxidase functions are target proteins for MF interaction, the flavoprotein inhibitor diphenyleneiodonium chloride (DPI) was used. MF-induced free radical production was not inhibited by DPI, whereas tetradecanoylphorbolacetate (TPA)-induced free radical production was diminished by about 70%. TPA is known to induce a direct activation of NADPH-oxidase through the PKC pathway. Since DPI lacks an inhibitory effect in MF-exposed MBM cells, we suggest that 50 Hz MF stimulates the NADH-oxidase pathway to produce superoxide anion radicals, but not the NADPH pathway. Furthermore, we showed an oscillation (1-10 days) in superoxide anion radical release in mouse macrophages, indicating a cyclic pattern of NADH-oxidase activity.

(E) (VT, AE, IFR) Roy S, Noda Y, Eckert V, Traber MG, Mori A, Liburdy R, Packer L. The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett. 376(3):164-166, 1995.

Magnetic fields (MF) may affect biological systems by increasing free radical concentrations. To test this, we have investigated whether low frequency (60 Hz) low intensity (0.1 mT) MF can modulate the phorbol 12-myristate 13-acetate (PMA) induced respiratory burst in primed rat peritoneal neutrophils, followed in real time using the dye 2',7'-dichlorofluorescein (DCFH), which reacts with free radical-derived oxidants such as H2O2 (which is formed from the dismutation of superoxide) to become 2',7'-dichlorofluorescein (DCF), a highly fluorescent compound. In the presence of the MF, a 12.4% increase in the fluorescence signal was observed in PMA-stimulated neutrophils (n = 5, P < 0.02, 18 pairs of measurements). We believe this represents the first experimental observation of MF influencing events involving free radical species generated during signal transduction in living cells.

This study was carried out to investigate the effects of 100 and 217 Hz extremely low-frequency pulsed electromagnetic fields (ELF-PEMF) on cell proliferation, actin reorganization, and ROS generation in a human breast carcinoma cells (T47D). Cells were exposed for 24-72 h, at 100 and 217 Hz, 0.1 mT. The treatment induced a time dependent decrease in cell growth after 72 h and revealed an increase in fluorescence intensity in cytoplasm and actin aggregations around the nucleus as detected by fluorescence microscopy. The amount of actin in T47D cells increased after 48 h exposure to 100 Hz and 24 h to 217 Hz while no changes in nuclear morphology were detected. Exposing the cells to 217 Hz for 72 h caused a dramatically increase of intracellular ROS generation while with exposure to 100 Hz it remained nearly unchanged. These results suggest that exposure to ELF-PEMF (100, 217 Hz, 0.1 mT) are able inducing an increase of actin level, its migration toward nucleus but despite of these changes and dramatically increase in ROS generation the symptoms of apoptosis were not observed. Our results support the hypothesis that cell response to EMF may only be observed at certain window effects; such as frequency and intensity of EMF parameters.

Effects of magnetic fields (MFs) on the activities of antioxidant enzymes of suspension-cultured tobacco cells were investigated. Compared with the control cells, exposure of the cells to static MF with the magnitudes of 10 and 30 mT for 5 days, 5 h each day, increased the activity of superoxide dismutase (SOD). In contrast, the activity of the catalase (CAT) and ascorbate peroxidase (APX) was decreased by MF, compared with those of the control cells. Level of lipid peroxidation was also increased by MF. It suggests that MF could deteriorate antioxidant defense system of plant cells.

It is well documented that extremely low frequency magnetic field (ELF MF) produced effects on the function of nervous system in humans and laboratory animals. Dopaminergic and serotonergic pathways have been implicated in obsessive compulsive disorder (OCD). Recently involvement of nitric oxide (NO) in OCD-like behavior is suggested. Hence, the present study was carried out to understand the involvement of dopamine, serotonin and NO in ELF MF induced OCD-like behavior. Swiss albino mice were exposed to ELF MF (50Hz, 10G) for 8h/day for 7, 30, 60, 90 and 120days by subjecting them to Helmholtz coils. OCD-like behavior was assessed in terms of marble burying behavior (MBB) test. Results revealed that ELF MF induced time dependant MBB, on 7th, 30th, 60th, 90th, and 120th exposure day. Further, levels of dopamine, serotonin and NO after 120days of ELF MF exposure were determined in regions of the brain. The neurohumoral studies revealed that exposure to ELF MF increased NO levels in cortex, hippocampus and hypothalamus, and levels of dopamine and serotonin remain unaffected. As OCD-like behavior after ELF MF
exposure was associated with higher levels of NO with no significant change in serotonin and dopamine, the effect of such exposure was studied in groups concurrently treated with NO modulators, NO precursor, L-ARG (400mg/kg) or NOS inhibitor, L-NAME (15.0mg/kg) or 7-NI (10.0mg/kg). These treatments revealed that NO precursor exacerbated and NOS inhibitors attenuated ELF MF induced OCD-like behavior with corresponding changes in the levels of NO.

Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: "extremely low frequency electromagnetic fields (ELF-EMFs)," "radiofrequency (RF)," "microwaves," "Wi-Fi," "mobile phone," "oxidative stress," "mitochondria," "fertility," "sperm," "testis," "oocyte," "ovarian follicle," and "embryo." These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.

PURPOSE: This study investigates the protective properties of Myrtus communis extract against oxidative effects of Extremely Low Frequency Magnetic Fields (ELFMF). Also this study is aimed to analyze the conformational changes of hemoglobin, oxidative damages to plasma proteins and antioxidant power of plasma following exposure to ELFMF. MATERIALS AND METHODS: Adult male rats were divided into 3 groups: (1) control, (2) ELFMF exposure, and (3) ELFMF exposure after Myrtus communis extract administration. The magnetic field (0.7 mT, 50 Hz) was produced by a Helmholtz coil for one month, 2 hours a day. The Myrtus communis extract was injected intraperitoneally at a dose of 0.5 mg/kg before exposure to ELFMF. The oxidative effects of ELFMF were studied by evaluating the hemoglobin, methemoglobin (metHb) and hemichrome levels, absorption spectrum of hemoglobin (200 to 700 nm), oxidative damage to plasma proteins by measuring protein carbonyl (PCO) levels and plasma antioxidant power according to ferric reducing ability of plasma (FRAP). The mean and standard errors of mean were determined for each group. One-way ANOVA analysis was used to compare the means of groups. The significance level was considered to be $P < 0.05$.

Moreover, artificial neural network (ANN) analysis was used to identify the predictive parameters for estimating the oxyhemoglobin (oxyHb) concentration. RESULTS: Exposure to ELFMF decreased the FRAP which was in concomitant with a significant increase in plasma PCO, metHb and hemichrome concentrations ($p < 0.001$). Oxidative modifications of Hb were shown by reduction in optical density at 340nm (globin-heme interaction) and 420 nm (heme-heme interaction). Administration of Myrtus communis extract increased FRAP values and decreased plasma POC, metHb and hemichrome concentrations. Also a significant increase in Hb absorbance at 340, 420, 542 and 577 nm showed the protective properties of Myrtus communis extract against ELFMF-induced oxidative stress in erythrocytes. ANN analysis showed that optical absorption of hemoglobin at 520, 577, 542, and 630 nm and concentration of metHb and hemichrome were the most important parameters in predicting the oxyHb concentration.

CONCLUSIONS: Myrtus communis extract enhances the ability of erythrocytes and plasma to deal with oxidative conditions during exposure to ELFMF. Also ANN analysis can predict the most important parameters in relation to Hb structure during oxidative stress.

BACKGROUND: Atherogenic effects of ELF-MF exposure have not been studied well so far. Therefore we have hypothesized that ELF-MF exposure might have atherogenic effect by impairing antioxidant function and increasing lipid peroxidation. This study was therefore undertaken to examine the effects of ELF-MF on paraoxonase (PON) activity, antioxidant capacity and lipid peroxidation metabolites. Effects of time on remodeling of antioxidant system were also investigated in this study. METHODS: Seventy five
Wistar rats were randomly allocated into five groups as follows: 1) Sham exposure, 2) Single exposure to 60 Hz, sacrificed immediately after exposure, 3) Single exposure to 60 Hz, sacrificed 72 hours after exposure, 4) Fourteen days of exposure to 60 Hz, sacrificed immediately after exposure, and 5) Fourteen days of exposure to 60 Hz, sacrificed 72 hours after exposure. Blood samples were collected and analyzed. The results were compared using ANOVA and post hoc Tukey HSD for multiple comparisons. RESULTS: Single ELF-MF exposure significantly increased lipid peroxidation (CD and MDA) and increased antioxidant serum activity (HDL, paraoxonase activity, and serum total antioxidant capacity). Chronic ELF-MF exposure increased lipid peroxidation and affected antioxidant system. Free fatty acids levels were significantly increased after both single and two weeks exposure. Chronic exposure led to irreversible changes while acute exposure tended to reversible alterations on above mentioned parameters. CONCLUSIONS: According to the results of this study, ELF-MF exposure could impair oxidant-antioxidant function and might increase oxidative stress and lipid peroxidation. Antioxidant capability was dependent on the duration and continuity of ELF-MF exposure.

Select references:

The aim of study was to investigate the effects of extremely low frequency magnetic field (ELF-MF; 50 Hz; 0.1, 0.25 and 0.5 mT) on oxidative stress in the brain of 3- (adult) and 10-month-old (middle-aged) gerbils. Nitric oxide (NO) level, superoxide (O2 (-)) production, superoxide dismutase (SOD) activity, and index of lipid peroxidation (ILP) were measured in the forebrain cortex, striatum, hippocampus, and cerebellum immediately and 3 days after cessation of 7-day exposure. In all gerbils, ELF-MF significantly increased oxidative stress in all tested brain regions. This effect was correlated with the value of magnetic induction and was higher in middle-aged gerbils. Three days after cessation of exposure, the values of examined parameters were closer to control levels. In adult gerbils, the effect of ELF-MF of 0.1 mT on NO level, O2 (-) production and SOD activity was almost fully disappeared, and ILP was at the control level regardless of the value of magnetic induction. In middle-aged gerbils, the effect of ELF-MF was still present but to a lesser degree than those observed immediately after cessation of exposure. These findings pointed out the ability of ELF-MF to induce age- and magnetic induction-dependent modification of oxidative stress in the brain.

In vivo effects of Static Electric and ELF Magnetic and Electric fields have been carried out for more than 20 years in the Bioelectromagnetic Laboratory at the Biophysics Department of the Medical Faculty of Gazi University. In this article, the results of in vivo ELF Electric field studies are presented as a review. Static and 50 Hz ELF (Extremely Low Frequency) Electric (E) fields effects on free radical synthesis, antioxidant enzyme level, and collagen synthesis were analyzed on tissues of guinea pigs, such as brain, liver, lung, kidney, spleen, testis, and plasma. Animals were exposed to static and ELF electric fields with intensities ranging...
from 0.3 kV/m to 1.9 kV/m in vertical and horizontal directions. Exposure periods were 1, 3, 5, 7, and 10 days. Electric fields were generated from a specially designed parallel plate capacitor system. The results indicate that the effects of electric fields on the tissues studied depend significantly on the type and magnitude of electric field and exposure period.

OBJECTIVE: The purpose of this study was to determine a possible relation between exposure to extremely low frequency magnetic field (ELF-MF) and the human antioxidant activity. METHODS: The total serum antioxidant status (TAS), red blood cells (RBCs) glutathione peroxidase (GPX) and superoxide dismutase (SOD) were measured in 46 spot welders who were occupationally exposed to ELF-MF (magnetic field strength = 8.8-84 microTesla (microT), frequency = 50 Hertz (Hz) and electric field strength = 20-133 V/m). The results were compared with a nonexposed ELF-MF control group. The correlation between magnetic field strength and antioxidant activity in RBCs and plasma was then assessed. RESULTS: No significant differences in TAS levels were observed (P value = 0.065). However, in RBCs of exposed group, a significant decrease in SOD and GPX activities was observed (P value = 0.001 and 0.003, respectively). This decrease was measured as 22 and 12.3%, respectively. Furthermore, a significant negative correlation between SOD/GPX activities and magnetic field intensity was observed (coefficients of SOD: -0.625, significance: 0.0001 and coefficients of GPX: -0.348, significance: 0.018). CONCLUSION: The results of this study indicate that ELF-MF could influence the RBC antioxidant activity and might act as an oxidative stressor. Intracellular antioxidant enzymes such as SOD and GPX were found to be the most important markers involving in this process. The influence of magnetic field on the antioxidant activity of RBCs might occur even at the recommended levels of exposure.

Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following
exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.

d12

Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS.

Iron is a component of many proteins that have crucial roles in plant growth and development, such as ferritin and catalase. Iron also, as a ferromagnetic element, is assumed to be influenced by a static magnetic field (SMF). In the present study, we examined the relationship between ferrous content and gene expression and activity of ferritin and catalase in soybean plants under the influence of 0, 20, and 30 mT SMF for 5 day, 5 h each. Exposure to 20 mT decreased gene expression of Fe transporter, ferrous and H_2O_2 contents and gene expression, content and activity of ferritin and catalase. Opposite responses were observed under 30 mT treatments. The results suggest that
SMF triggered a signaling pathway that is mediated by iron. The structure and activity of purified ferritin and apoferritin from horse spleen, and catalase from bovine liver proteins under SMF were evaluated as well. Secondary structure of proteins were not influenced by SMF (evidenced by far-UV circular dichroism), whereas their tertiary structure, size, and activity were altered (shown by fluorescence spectroscopy and dynamic light-scattering). From these results, it is likely that the number of iron atoms is involved in the nature of influence of SMF on protein structure.

Effects of 50 Hz electromagnetic fields on phagocytosis and free radical production were examined in mouse bone marrow-derived macrophages. Macrophages were in vitro exposed to electromagnetic fields using different magnetic field densities (0.5-1.5 mT). Short-time exposure (45 min) to electromagnetic fields resulted in significantly increased phagocytic uptake (36.3% +/- 15.1%) as quantified by measuring the internalization rate of latex beads. Stimulation with 1 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) showed the same increased phagocytic activity as 1 mT electromagnetic fields. However, co-exposure to electromagnetic fields and TPA showed no further increase of bead uptake, and therefore we concluded that because of the absence of additive effects, the electromagnetic fields-induced stimulation of mouse bone marrow-derived macrophages does not involve the protein kinase C signal transduction pathway. Furthermore, a significant increased superoxide production after exposure to electromagnetic fields was detected.

Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (ELF-EMF) has been performed for a long time. Epidemiologic studies regarding ELF-EMF-exposure have focused primarily on leukaemia development due to residential sources in children and adults, and from occupational exposure in adults, but also on other kinds of cancer. Genotoxic investigations of EMF have shown contradictory results, a biological mechanism is still lacking that can explain the link between cancer development and ELF-EMF-exposure. Recent laboratory research has attempted to show general biological effects, and such that could be related to cancer development and/or promotion. Metabolic processes which generate oxidants and antioxidants can be influenced by environmental factors, such as ELF-EMF. Increased ELF-EMF exposure can modify the activity of the organism by reactive oxygen species leading to oxidative stress. It is well established that free radicals can interact with DNA resulting in single strand breaks. DNA damage could become a site of mutation, a key step to carcinogenesis. Furthermore,
different cell types react differently to the same stimulus, because of their cell type specific redox status. The modulation of cellular redox balance by the enhancement of oxidative intermediates, or the inhibition or reduction of antioxidants, is discussed in this review. An additional aspect of free radicals is their function to influence other illnesses such as Parkinson's and Alzheimer's diseases. On the other hand, modulation of antioxidants by ELF-EMF can lower the intracellular defence activity promoting the development of DNA damage. It has also been demonstrated that low levels of reactive oxygen species trigger intracellular signals that involve the transcription of genes and leading to responses including cell proliferation and apoptosis. In this review, a general overview is given about oxidative stress, as well as experimental studies are reviewed as they are related to changes in oxidant and antioxidant content after ELF-EMF exposure inducing different biological effects. Finally, we conclude from our review that modulations on the oxidant and antioxidant level through ELF-EMF exposure can play a causal role in cancer development.

There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively
influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.

The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.

This study was carried out in order to determine nitric oxide (NO) production immediately after a 1.5 T magnetic field 30 min exposure to an experimental group, comprising 33 healthy young male volunteers aged 18-26 years old. In addition, a control group, comprising 30 healthy male volunteers aged 19-26 years old, was not exposed to the magnetic field and their NO levels were also measured. The experimental group was exposed using a magnetic resonance imaging (MRI) apparatus. Nitrite and nitrate concentrations were determined by UV-VIS spectrophotometer. The results, related to the parameters measured in this study, were
analyzed by one-way ANOVA. **Total nitrite concentration in post-magnetic field samples was found to be higher than in pre-magnetic field samples** (P < .05).

The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis.

More and more studies suggest that prolonged exposure to EMF may cause adverse biological effects and point directly to a significantly negative correlation between EMF and human health, especially men fertility. In our previous study, we reported that this could be related to the EMF-induced reactive oxygen species formation, followed by DNA damage, cell cycle arrest and apoptosis induction. In this study, we decided to expand our research by the search for substances which would prevent EMF-induced damage in spermatogenic cells. Such an agent seems to be Aloe arborescens Mill. juice, which was shown to possess a wide range of protective properties. The administration of aloe extract helps among others to prevent the formation of free radicals by various biochemical pathways. Therefore, the main aim of our study was to provide a significant knowledge concerning the mechanism involved in the multi-pathway cytoprotective response of aloe juice against EMF. The study was carried out in an in vitro mouse spermatogenesis pathway cell lines (GC-1 spg and GC-2 spd). Our results suggest that the aloe juice has many positive effects, especially for the cellular antioxidant systems by reducing the intracellular reactive oxygen species pool induced by EMF. In consequence, aloe juice prevents DNA damage, cell cycle arrest and therefore the viability and metabolic activity of both cell line tested are preserved. In
conclusion, our study provides new insight into the underlying mechanisms through which aloe juice prevents spermatogenic cells from cytotoxic and genotoxic events.

Previously, we showed that exposure of human normal and cancer cells to a 6 mT, 60 Hz gradient electromagnetic field (EMF) induced genotoxicity. Here, we investigated the cellular effects of a uniform EMF. Single or repetitive exposure to a 6 mT, 60 Hz uniform EMF neither induced DNA damage nor affected cell viability in HeLa and primary IMR-90 fibroblasts. However, continuous exposure of these cells to an EMF promoted cell proliferation. Cell viability increased 24.4% for HeLa and 15.2% for IMR-90 cells after a total 168 h exposure by subculture. This increase in cell proliferation was directly correlated with EMF strength and exposure time. When further incubated without EMF, cell proliferation slowed down to that of unexposed cells, suggesting that the proliferative effect is reversible. The expression of cell cycle markers increased in cells continuously exposed to an EMF as expected, but the distribution of cells in each stage of the cell cycle did not change. Notably, intracellular reactive oxygen species levels decreased and phosphorylation of Akt and Erk1/2 increased in cells exposed to an EMF, suggesting that reduced levels of intracellular reactive oxygen species play a role in increased proliferation. These results demonstrate that EMF uniformity at an extremely low frequency (ELF) is an important factor in the cellular effects of ELF-EMF.

Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines...
originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

The effects of a static magnetic field (SMF) on the proliferation of various types of human cells were determined. All cultures were maintained at 37 °C throughout the experiment. SMF was generated by placing two magnets oppositely oriented on either side of a T25 flask. The flux density in the flask ranged from 35 to 120 mT. Growth curves were constructed by plotting cell number at 18 h and 4, 7, 11, and 14 days after seeding, with the 18-h point being a measure of attachment efficiency. Exposure to SMF significantly decreased initial attachment of fibroblasts and decreased subsequent growth compared to sham-exposed control. Significant effects were observed in both fetal lung (WI-38) and adult skin fibroblasts, but they were generally larger in the fetal lung fibroblast line. SMF did not affect attachment of human melanoma cells, but inhibited their growth by 20% on day 7. SMF produced no effects in a human adult stem cell line. Oxidant production increased 37% in WI-38 cells exposed to SMF (230-250 mT) during the first 18 h after seeding, when cell attachment occurs. Conversely, no elevation in oxidant levels was observed after a prolonged 5-day exposure. These results indicate that exposure to SMF has significant biological effects in some, but not all types of human cells.

PURPOSE: Exposure to extremely low frequency electromagnetic fields (ELF-EMFs) could elicit biological effects including carcinogenesis. However, the detailed mechanisms by which these ELF-EMFs interact with biological system are currently unclear. Previously, we found that a 50-Hz magnetic field (MF) exposure could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell membranes. In the present experiment, the possible roles of reactive oxygen species (ROS) in MF-induced EGFR clustering were investigated. MATERIALS AND METHODS: Human amnion epithelial (FL) cells were exposed to a 50-Hz MF with or without N-acetyl-l-cysteine (NAC) or pyrrolidine dithiocarbamate (PDTC). EGFR clustering on cellular membrane surface was analyzed using confocal microscopy after indirect immunofluorescence staining. The intracellular ROS level...
and acid sphingomyelinase (ASMase) activity were detected using an ROS assay kit and an Amplex® Red Sphingomyelinase Assay Kit, respectively. RESULTS: Results showed that exposure of FL cells to a 50-Hz MF at 0.4 mT for 15 min significantly enhanced the ROS level, induced EGFR clustering and increased ASMase activity. However, pretreatment with NAC or PDTC, the scavenger of ROS, not only counteracted the effects of a 50-Hz MF on ROS level and AMS activity, but also inhibited the EGFR clustering induced by MF exposure. CONCLUSIONS: The present and previous data suggest that ROS mediates the MF-induced EGFR clustering via ASMase activation.

The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

PURPOSE: With all-pervasive presence of extremely low-frequency electromagnetic field (ELF-EMF) in modern life, ELF-EMF has been regarded as an essential factor which may induce changes in many organisms. The objective of the present study was to investigate the physiological responses of Caenorhabditis elegans (C. elegans) to 50 Hz, 3 mT ELF-EMF exposure.

MATERIALS AND METHODS: Worms were exposed to ELF-EMF from the egg stage until reaching the fourth larva (L4) stage. After exposure, expressions of the tricarboxylic acid (TCA) cycle enzymes were examined by qRT-PCR and western blot analysis. Two lipid metabolites were detected by GC-MS. Reactive oxygen species (ROS) level was detected by dichlorofluorescein staining and worm antioxidant system was investigated by enzymatic activity analysis, including detection of the superoxide dismutase and catalase (CAT) activity and the total antioxidant capacity (T-AOC).

RESULTS: The TCA cycle enzyme, fumarase was found with decreased expression under ELF-EMF exposure. And arachidonic acid (ArA) and prostaglandin E2 (PGE2) showed elevated concentrations, with increased expression of prostaglandin E2 synthase (PGES-2) in ELF-EMF exposed worms. Significant elevation of ROS level was identified accompanied with the significant depression of T-AOC in response to ELF-EMF.

CONCLUSIONS: Our results suggested that exposure to 50 Hz, 3 mT ELF-EMF in C. elegans can elicit disruptions of the TCA cycle metabolism and PGE2 formation, coupling ELF-EMF-induced oxidative stress responses. Our study probably will attract increasing attentions to the controllable application of ELF-EMF associated with health and disease.

[Article in Chinese]

The aim of this study was to determine the effects of extremely low frequency electromagnetic field (ELF-EMF) on energy metabolism and oxidative stress in Caenorhabditis elegans (C. elegans). Worms in three adult stages (young adult stage, egg-laying stage and peak egg-laying stage) were investigated under 50 Hz, 3 mT ELF-EMF exposure. ATP levels, ATP synthase activity in vivo, reactive oxygen species (ROS) content, and changes of total antioxidant capacity (TAC) were detected, and worms' oxidative stress responses were also evaluated under ELF-EMF exposure. The results showed that ATP levels were significantly increased under this ELF-EMF exposure, and mitochondrial ATP synthase activity was upregulated simultaneously. In young adult stage, worms' ROS level was significantly elevated, together with upregulated TAC but with a decreased ROS-TAC score indicated by principal
component analysis. ROS level and TAC of worms had no significant changes in egg-laying and peak egg-laying stages. Based on these results, we concluded that ELF-EMF can enhance worm energy metabolism and elicit oxidative stress, mainly manifesting as ATP and ROS level elevation together with ATP synthase upregulation and ROS-TAC score decrease in young adult C. elegans.

Our previous studies showed that extremely low frequency magnetic fields (ELF-MFs) inhibited tumor growth and change proportion of splenic regulatory T cells (Treg cells). Here, we focus on the effect of ELF-MFs on lung metastatic melanoma mouse model and the regulatory mechanism of ELF-MFs on the differentiation of Treg cells. Tumor-bearing mice were exposed to sham ELF-MFs and ELF-MFs (0.4 T, 7.5 Hz) 2 h/day for 27 days. Metastatic tumor burden of lung was significantly decreased after ELF-MF treatment. Compared to the control group, expressions of matrix metalloproteinase (MMP2, MMP9) and forkhead box P3 (Foxp3) in lung nodules significantly decreased in the ELF-MF group. Moreover, in vitro, after stimulated with anti-CD3, anti-CD28 antibodies and transforming growth factor-β (TGF-β) and treated with ELF-MFs for 2 h, expression of Foxp3 in total T cells was significantly decreased. Differentiation rate of Treg cells was inhibited from 32.0% to 22.1% by ELF-MFs. Furthermore, reactive oxygen species (ROS) was increased and phospho-serine/threonine protein kinase (p-AKT) was inhibited in both T cells and Jurkat cells. ROS scavenger N-acetyl-l-cysteine reversed inhibition of AKT pathway and expression of Foxp3 from 18.6% to 26.6% in T cells. Taken together, our data show that ELF-MF exposure promoted the inhibitory effect of ROS on AKT pathway and decreased Foxp3 expression, which provides an explanation for why ELF-MF exposure can inhibit differentiation of Treg cells and enhance antitumor effect in metastatic melanoma mouse model.

There is evidence to suggest that the neuroprotective effect of exposure of extremely low-frequency electromagnetic fields (ELF-EMF) may be due, at least in part, to the effect of these fields on neurotrophic factors levels and cell survival, leading to an improvement in behavior. This study was undertaken to investigate the neuroprotective effects of ELFEF in a rat model of 3-nitropropionic acid (3NP)-induced Huntington's disease. Behavior patterns were evaluated, and changes in neurotrophic factor, cell damage, and oxidative stress biomarker levels were monitored in Wistar rats. Rats were given 3NP over four consecutive days (20 mg/kg body weight), whereas ELFEF (60 Hz and 0.7 mT) was applied over 21 days, starting after the last injection of 3NP. Rats
treated with 3NP exhibited significantly different behavior in the open field test (OFT) and the forced swim test (FST), and displayed significant differences in neurotrophic factor levels and oxidative stress biomarkers levels, together with a neuronal damage and diminished neuronal density, with respect neuronal controls. ELFEF improved neurological scores, enhanced neurotrophic factor levels, and reduced both oxidative damage and neuronal loss in 3NP-treated rats. ELFEF alleviates 3NP-induced brain injury and prevents loss of neurons in rat striatum, thus showing considerable potential as a therapeutic tool.

INTRODUCTION: Electromagnetic fields (EMF) have adverse effects as a result of widespread use of electromagnetic energy on biological systems. The aim of this study was to investigate the effects of prenatal exposure to EMF on rat myocardium by biochemical and histopathological evaluations. MATERIAL AND METHODS: In this study, 10 pregnant Wistar rats were used. Half of the pregnant rats were exposed to EMF of 3 mT, and the other half to sham conditions during gestation. After parturition, rat pups in the 5 EMF-exposed litters from birth until postnatal day 20 were exposed to EMF of 3 mT for 4 h/day (EMF-exposed group, n = 30). Rat pups in sham litters from birth until postnatal day 20 were exposed to sham conditions (sham group, n= 20). RESULTS: In the EMF-exposed group, lipid peroxidation levels significantly increased compared to sham. Superoxide dismutase activities decreased significantly in the EMF-exposed group compared to sham. TUNEL staining showed that the number of TUNEL-positive cells increased significantly in EMF-exposed rats compared with sham. Under electron microscopy, there were mitochondrial degeneration, reduction in myofibrils, dilated sarcoplasmic reticulum and perinuclear vacuolization in EMF-exposed rats. CONCLUSIONS: In conclusion, the results show that prenatal exposure to EMF causes oxidative stress, apoptosis and morphological pathology in myocardium of rat pups. The results of our study indicate a probable role of free radicals in the adverse effects of prenatal exposure to EMF. Further studies are needed to demonstrate whether the EMF exposure can induce adverse effects on the myocardium.

There is apprehension about widespread use of electrical and electromagnetic gadgets which are supposed to emit electromagnetic radiations. Reports are controversy. These electromagnetic fields (EMFs) have considerable effect on endocrine system of exposed subjects. This study was focused to assess the possible bioeffects of extremely low-frequency (ELF)-EMFs on epinephrine level, DNA damage and oxidative stress in subjects occupationally exposed to 132 kV high-voltage substations. The blood sample of 142 exposed subjects and 151 non-exposed individuals was
analyzed. Plasma epinephrine was measured by enzyme-linked immunosorbent assay, DNA damage was studied by alkaline comet assay along with oxidative stress. Epinephrine levels of sub-groups showed mean concentration of 75.22 ± 1.46, 64.43 ± 8.26 and 48.47 ± 4.97 for high, medium and low exposed groups, respectively. DNA damage ranged between 1.69 µm and 9.91 µm. The oxidative stress levels showed significant increase. The individuals employed in the live-line procedures were found to be vulnerable for EM stress with altered epinephrine concentrations, DNA damage and increased oxidative stress.

This study aimed to determine the effect of magnetic fields on the antioxidative defense and fitness-related traits of Baculum extradentatum. Following exposure to magnetic fields, antioxidative defense (superoxide dismutase (SOD), catalase (CAT) activities, and total glutathione (GSH) content) and fitness-related traits (egg mortality, development dynamics, and mass of nymphs) were monitored in nymphs. The experimental groups were: control (kept out of influence of the magnets), a group exposed to a constant magnetic field (CMF) of 50 mT, and a group exposed to an alternating magnetic field (AMF) of 50 Hz, 6 mT. We found increased SOD and CAT activities in animals exposed to constant and AMFs, whereas GSH activity was not influenced by experimental magnetic fields. No differences were found in egg mortality between control and experimental groups. Significant differences in the time of development between the control and the CMF group were observed, as well as between the CMF and the AMF group. No differences were found in the mass of the nymphs between the three experimental groups. In conclusion, CMF and AMF have the possibility to modulate the antioxidative defense and some of the fitness-related traits in B. extradentatum.

PURPOSE: The main goal of this study was to analyze the long - term effects of static (SMF) and extremely low frequency magnetic field (ELF MF) on nymphal gut mass and antioxidant biomarkers in this tissue of cockroach Blaptica dubia. MATERIALS AND METHODS: One month old nymphs were exposed to magnetic field (MF) for
5 months in three experimental groups: control, exposure to a SMF (110 mT) and exposure to ELF MF (50 Hz, 10 mT). RESULTS: The gut masses of the MF groups were significantly lower when compared to control. Superoksid dismutase (SOD) and catalase (CAT) activities were markedly higher than for the control and the differences between the MF groups were statistically significant only for SOD. The applied MF had no effect on total glutathione (GSH) content. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly lower in both MF groups in comparison to the control. There was a significant difference between MF groups for GR activity. Principal Component Analysis (PCA) showed that CAT and GST were the main factors contributing to differentiation of the control group from the treated experimental groups along PCA 1, and SOD and GR along PCA 2. PCA revealed clear separation between experimental groups depend on antioxidant biomarker response. CONCLUSION: The applied magnetic fields could be considered a potential stressor influencing gut mass, as well as examined antioxidative biomarkers.

An investigation was conducted on the effect of transcranial magnetic field stimulation (TMS) on the free radical production and neuronal cell loss produced by 3-nitropropionic acid in rats. The effects of 3-nitropropionic acid were evaluated by examining the following changes in: the quantity of hydroperoxides and total radical-trapping antioxidant potential (TRAP), lipid peroxidation products, protein carbonyl groups, reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px), catalase and succinate dehydrogenase (SDH) activities; total nitrite and cell death [morphological changes, quantification of neuronal loss and lactate dehydrogenase (LDH) levels]. Our results reveal that 3-nitropropionic acid induces oxidative and nitrosative stress in the striatum, prompts cell loss and also shows that TMS prevents the harmful effects induced by the acid. In conclusion, the results show the ability of TMS to modify neuronal response to 3-nitropropionic acid.

PURPOSE: The aim of this study was to evaluate the possible effects of varied exposure to 50 Hz extremely low frequency (ELF) electric field (EF) on the lipid peroxidation levels and antioxidant enzyme activities in the brain homogenates of guinea pigs. Subjects
were exposed to 2 kV/m, 2.5 kV/m, 3 kV/m, 3.5 kV/m, 4 kV/m, 4.5 kV/m and 5 kV/m electric fields for three days, 8 h a day in both vertical and horizontal directions. MATERIALS AND METHODS: Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were measured in order to identify possible alterations in lipid peroxidation levels and antioxidant status due to electric field exposure. Xanthine oxidase (XO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were also evaluated in the same samples. RESULTS: Although the study showed several positive but non-significant findings (p > 0.05), we did not find significant differences among all of the exposed groups and sham groups in lipid peroxidation levels and enzyme activities (p > 0.05) at all strengths and in both directions. Furthermore, the result was the same when the comparison was made between the groups in vertical directions and horizontal directions (p > 0.05). CONCLUSION: The present study observed effects of 50 Hz EF exposure on lipid peroxidation levels and antioxidant defense mechanisms but these were not statistically significant at the 95% confidence level. Further research on the effects ELF-EF exposure on lipid peroxidation levels and antioxidant defence mechanisms are warranted.

Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity.

Osteoarthritis (OA) is the most frequently occurring rheumatic disease, caused by metabolic changes in chondrocytes, the cells that maintain cartilage. Treatment with electromagnetic fields (MF) produces benefits in patients affected by this pathology. Isolated human osteoarthritic (OA) chondrocytes were cultured in vitro under standard conditions or stimulated with IL-1beta or IGF-1, to mimic the imbalance between chondroformation and chondroresorption processes observed in OA cartilage in vivo. The cells were exposed for a specific time to extremely low frequency (ELF; 100-Hz) electromagnetic fields and to the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEF), which are characterized by variable frequencies, intensities, and
waveforms. Using flow cytometry, we tested the effects of the different types of exposure on chondrocyte metabolism. The exposure of the cells to both systems enhances cell proliferation, does not generate reactive oxygen species, does not cause glutathione depletion or changes in mitochondrial transmembrane potential and does not induce apoptosis. This study presents scientific support to the fact that MF could influence OA chondrocytes from different points of view (viability, ROS production and apoptosis). We can conclude that both ELF and TAMMEF systems could be recommended for OA therapy and represent a valid non-pharmacological approach to the treatment of this pathology.

(E) (VT, AE, IFR, IOD) Vergallo C, Panzarini E, Tenuzzo BA, Mariano S, Tata AM, Dini L. Moderate Static Magnetic Field (6 mT)-Induced Lipid Rafts Rearrangement Increases Silver NPs Uptake in Human Lymphocytes. Molecules. 2020 Mar 19;25(6).

One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules.

The effect of pulsed electromagnetic field (PEMF) therapy, also called magnetic therapy, upon inflammatory biomarkers associated with oxidative stress plasma fibrinogen, nitric oxide (NO), L-citrulline, carbonyl groups, and superoxide dismutase (SOD) was
evaluated through histological assessment, in rats with experimental myopathy. The groups studied were: (A) control (intact rats that received PEMF sham exposures); (B) rats with myopathy and sacrificed 24 h later; (C) rats with myopathy; (D) rats with myopathy and treated with PEMF; and (E) intact rats treated with PEMF. Groups A, C, D, and E were sacrificed 8 days later. Myopathy was induced by injecting 50 μl of 1% carrageenan (type IV) once sub-plantar. Treatment was carried out with PEMF emitting equipment with two flat solenoid disks for 8 consecutive days in groups D and E, at 20 mT and 50 Hz for 30 min/day/rat. The biomarkers were determined by spectrophotometry. The muscles (5/8) were stained with Hematoxylin-Eosin and examined by optic microscopy. Quantitative variables were statistically analyzed by the Fisher test, and categorical applying Pearson's Chi Squared test at p < 0.05 for all cases. In Groups B and C, the biomarkers were significantly increased compared to A, D, and E groups: fibrinogen (p < 0.001); NO, L-citrulline and carbonyl groups (p < 0.05); SOD (p < 0.01) as well as the percentage of area with inflammatory infiltration (p < 0.001). PEMF caused decreased levels of fibrinogen, L-citrulline, NO, SOD, and carbonyl groups and significant muscle recovery in rats with experimental myopathies.

In the present study, we used human peripheral blood leukocytes from 4 different donors, to investigate in vitro the possible genotoxic and/or co-genotoxic activity of extremely low frequency magnetic fields (ELF-MF) at 3 mT intensity. Two model mutagens were used to study the possible interaction between ELF-MF and xenobiotics: N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline N-oxide (4NQO). Primary DNA damage was evaluated by the alkaline single-cell microgel-electrophoresis ("comet") assay. Control cells (leukocytes not exposed to ELF-MF, nor treated with genotoxins) from the different blood donors showed a comparable level of basal DNA damage, whereas the contribution of individual susceptibility toward ELF-MF and the tested genotoxic compounds led to differences in the extent of DNA damage observed following exposure to the genotoxins, both in the presence and in the absence of an applied ELF-MF. A 3 mT ELF-MF alone was unable to cause direct primary DNA damage. In leukocytes exposed to ELF-MF and genotoxins, the extent of MNNG-induced DNA damage increased with exposure duration compared to sham-exposed cells. The opposite was observed in cells treated with 4NQO. In this case the extent of 4NQO-induced DNA damage was somewhat reduced in leukocytes exposed to ELF-MF compared to sham-exposed cells. Moreover, in cells exposed to ELF-MF an increased concentration of GSH was always observed, compared to sham-exposed cells. Since following GSH conjugation the genotoxic pattern of MNNG and 4NQO is quite different, an influence of ELF-MF on the activity of the enzyme involved in the synthesis of GSH leading to different activation/deactivation of the model mutagens used was hypothesized to explain the different trends observed in MNNG and 4NQO genotoxic activity in the presence of an applied ELF-MF. The possibility
that ELF-MF might interfere with the genotoxic activity of xenobiotics has important implications, since human populations are likely to be exposed to a variety of genotoxic agents concomitantly with exposure to this type of physical agent.

Whether exposure to 50-60Hz extremely low frequency magnetic fields (ELF-MF) exerts neurotoxic effects is a debated issue. Analogously, the potential role of Aluminum (Al) in neurodegeneration is a matter of controversial debate. As all living organisms are exposed to ELF-MF and/or Al daily, we found investigating the early effects of co-exposure to ELF-MF and Al in SH-SY5Y and SK-N-BE-2 human neuroblastoma (NB) cells intriguing. SH-SY5Y5 and SK-N-BE-2 cells underwent exposure to 50Hz ELF-MF (0.01, 0.1 or 1mT) or AlCl₃ (4 or 40μM) or co-exposure to 50Hz ELF-MF and AlCl₃ for 1h continuously or 5h intermittently. The effects of the treatment were evaluated in terms of DNA damage, redox status changes and Hsp70 expression. The DNA damage was assessed by Comet assay; the cellular redox status was investigated by measuring the amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) while the inducible Hsp70 expression was evaluated by western blot analysis and real-time RT-PCR. Neither exposure to ELF-MF or AlCl₃ alone induced DNA damage, changes in GSH/GSSG ratio or variations in Hsp70 expression with respect to the controls in both NB cell lines. Similarly, co-exposure to ELF-MF and AlCl₃ did not have any synergic toxic effects. The results of this in vitro study, which deals with the effects of co-exposure to 50Hz MF and Aluminum, seem to exclude that short-term exposure to ELF-MF in combination with Al can have harmful effects on human SH-SY5Y and SK-N-BE-2 cells.

Some implications of cooperative potential of metal ions and electromagnetic fields' radiation (EMF) in carcinogenic processes are discussed. It is known that these factors, chemical and physical individually have connections with processes of oxidative stress. Special attention was paid to possible manifestation within the brain. Therefore, the entry of a few potentially neurotoxic metals into the brain is discussed.

Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we
summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.

Ferroptosis is an iron depend cell death which caused by lipid peroxidation. Abnormal iron metabolism and high intracellular iron content are the characteristics of most cancer cells. Iron is a promoter of cell growth and proliferation. However, iron also could take part in Fenton reaction to produce reactive oxygen species (ROS). The intercellular ROS could induce lipid peroxidation, which is necessary for ferroptosis. Iron metabolism mainly includes three parts: iron uptake, storage and efflux. Therefore, iron metabolism-related genes could regulate intercellular iron content and status, which can be involved ferroptosis. In recent years, the application of nanoparticles in cancer therapy research has become more and more extensive. The iron-based nanoparticles (iron-based NPs) can release ferrous (Fe^{2+}) or ferric (Fe^{3+}) in acidic lysosomes and inducing ferroptosis. Magnetic field is widely used in the targeted concentration of iron-based NPs related disease therapy. Furthermore, multiple studies showed that magnetic fields can inhibit cancer cell proliferation by promoting intracellular ROS production. Herein, we focus on the relationship of between ferroptosis and iron metabolism in cancer cells, the application of nanoparticles and magnetic field in inducing ferroptosis of cancer cells, and trying to provide new ideas for cancer treatment research.

The effects of exposure to magnetic fields (MFs) at electric frequencies (50-60 Hz) on carcinogenicity are still in debate. Whether exposure to MFs affects the heart is also a debated issue. This study aimed to determine whether exposure to extremely low frequency MFs (ELF-MFs) induced DNA damage in cardiomyocytes both in vitro and in vivo. Human ventricular cardiomyocytes were exposed to 50 Hz ELF-MF at 100 µT for 1 h continuously or 75 min intermittently. The effects of the treatments were evaluated by DNA damage, redox status changes and relative signal molecular expression. Moreover, ten male Sprague-Dawley rats were exposed to a 50 Hz MF at 100 µT for 7 days, while another 10 rats were sham exposed. The protein levels of p53 and Hsp70 in heart tissue were
analyzed by western blot. The results showed that exposure to ELF-MF did not induce DNA damage, changes to cell cycle distribution or increased reactive oxygen species level. No significant differences were detected in p53 and Hsp70 expression level between the ELF-MF and sham-exposure groups both in vitro and in vivo. All these data indicate that MFs at power-frequency may not cause DNA damage in cardiomyocytes.

The presence of more than one dental alloy in the oral cavity often causes pathological galvanic currents and voltage resulting in superficial erosions of the oral mucosa and eventually in the emergence of oral cancer. In the present study the mechanisms of apoptosis of oral mucosa cancer cells in response to electromagnetic fields was investigated. Direct current (DC) electrical fields with field strengths between 2 and 16 V/m, applied for 24 h to UM-SCC-14-C oral mucosa cancer cells, dose-dependently resulted in decreased cell proliferation as evaluated by Ki-67 immunohistochemistry and upregulation of the cyclin-dependent kinase (CDK) inhibitors p21cip1/waf1 and p27kip1, which are associated with cell cycle arrest. Electrical field treatment (4 V/m, 24 h) increased apoptosis as evaluated by immunohistochemical analysis of cleaved caspase-3 and poly-(ADP-ribose)-polymerase-1 (PARP-1). Furthermore, robust reactive oxygen species (ROS) generation, increased expression of NADPH oxidase subunits as well as Hsp70 was observed. Electrical field treatment (4 V/m, 24 h) resulted in increased expression of Cu/Zn superoxide dismutase and decreased intracellular concentration of reduced glutathione (GSH), whereas the expression of catalase remained unchanged. Pre-treatment with the free radical scavenger N-acetyl cysteine (NAC) and the superoxide dismutase mimetic EUK-8 abolished caspase-3 and PARP-1 induction, suggesting that apoptosis in oral mucosa cancer cells is initiated by ROS generation in response to DC electrical field treatment.

HL-60 leukemia cells, Rat-1 fibroblasts and WI-38 diploid fibroblasts were exposed for 24-72 h to 0.5-1.0-mT 50-Hz extremely low frequency electromagnetic field (ELF-EMF). This treatment induced a dose-dependent increase in the proliferation rate of all cell types, namely about 30% increase of cell proliferation after 72-h exposure to 1.0 mT. This was accompanied by increased percentage of cells in the S-phase after 12- and 48-h exposure. The ability of ELF-EMF to induce DNA damage was also investigated by measuring DNA strand breaks. A dose-dependent increase in DNA damage was observed in all cell lines, with two peaks occurring at
24 and 72 h. A similar pattern of DNA damage was observed by measuring formation of 8-OHdG adducts. The effects of ELF-EMF on cell proliferation and DNA damage were prevented by pretreatment of cells with an antioxidant like alpha-tocopherol, suggesting that redox reactions were involved. Accordingly, Rat-1 fibroblasts that had been exposed to ELF-EMF for 3 or 24 h exhibited a significant increase in dichlorofluorescein-detectable reactive oxygen species, which was blunted by alpha-tocopherol pretreatment. Cells exposed to ELF-EMF and examined as early as 6 h after treatment initiation also exhibited modifications of NF kappa B-related proteins (p65-p50 and I kappa B alpha), which were suggestive of increased formation of p65-p50 or p65-p65 active forms, a process usually attributed to redox reactions. **These results suggest that ELF-EMF influence proliferation and DNA damage in both normal and tumor cells through the action of free radical species**. This information may be of value for appraising the pathophysiologic consequences of an exposure to ELF-EMF.

With the increasing voltage of direct current transmission line, the intensity of the environmental static electric field has also increased. Thus, whether static electric fields cause biological injury is an important question. In this study, the effects of chronic exposure to environmental static electric fields on some antioxidant enzymes activities in the hepatocytes of mice were investigated. Male Institute of Cancer Research mice were exposed for 35 days to environmental static electric fields of different electric field intensities of 9.2-21.85 kV/m (experiment group I, EG-I), 2.3-15.4 kV/m (experiment group II, EG-II), and 0 kV/m (control group, CG). On days 7, 14, 21, and 35 of the exposure cycle, liver homogenates were obtained and the activities of antioxidant enzymes like superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were determined, as well as the concentration of malonaldehyde. The results revealed a significant increase in superoxide dismutase activity in both EG-I and EG-II on the 7th (P < 0.05) and 35th days (P < 0.01) of the exposure cycle compared to that in the control group. However, the other test indices such as glutathione S-transferase, glutathione peroxidase, and malonaldehyde showed only minimal changes during the exposure cycle. These results revealed a weak relationship between the exposure to environmental static electric fields and hepatic oxidative stress in living organisms.

The biological effects of magnetic fields are a research hotspot in the field of biomedical engineering. In this study, we further investigated the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on the growth of human umbilical vein...
endothelial cells (HUVECs) and Caenorhabditis elegans. The results showed that RMF exposure prolonged the lifespan of C. elegans and slowed the aging of HUVECs. RMF treatment of HUVECs showed that activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) was associated with decreased mitochondrial membrane potential (MMP) due to increased intracellular Ca²⁺ concentrations induced by endoplasmic reticulum stress in anti-aging mechanisms. RMF also promoted the health status of C. elegans by improving activity, reducing age-related pigment accumulation, delaying Aβ-induced paralysis and increasing resistance to heat and oxidative stress. The prolonged lifespan of C. elegans was associated with decreased levels of daf-16 which related to the insulin/insulin-like growth factor signaling pathway (IIS) activity and reactive oxygen species (ROS), whereas the heat shock transcription factor-1 (hsf-1) pathway was not involved. Moreover, the level of autophagy was increased after RMF treatment. These findings expand our understanding of the potential mechanisms by which RMF treatment prolongs lifespan.

OBJECTIVE: To investigate the effects of extremely low frequency electromagnetic field (ELF-EMF) on human osteosarcoma cells and its mechanisms. METHODS: Human osteosarcoma MG-63 cells were exposed to 50 Hz, 1 mT ELF-EMF for 1, 2 and 3 h in vitro, with or without pretreatment by reactive oxygen species (ROS) inhibitor N acetylcysteine (NAC) or p38MAPK inhibitor SB203580. The proliferation of MG-63 cells was determined by MTT method; the apoptosis rate and ROS level in MG-63 cells were detected by flow cytometry. The expression of p38MAPK in MG-63 cells was determined by Western blotting. RESULTS:
ELF-EMF decreased the viability of MG-63 cells, inhibited cell growth, induced cell apoptosis and increased the level of ROS significantly. The apoptosis rate declined significantly after treatment with ROS inhibitor NAC or p38MAPK inhibitor SB203580. After exposure to ELF-EMF, p38MAPK in MG-63 cells was activated, and the phosphorylation level was also inhibited after treatment with NAC. CONCLUSION: ELF-EMF can induce the apoptosis of MG-63 cells. Increased ROS and p38MAPK activation may be involved in the mechanism.

Previously, we found that electromagnetic pulses (EMP) induced an increase in blood brain barrier permeability and the leakage of albumin from blood into brain tissue. Albumin is known to activate microglia cells. Thus, we hypothesised that microglia activation could occur in the brain after EMP exposure. To test this hypothesis, the morphology and secretory function of microglia cells, including the expression of OX-42 (a marker of microglia activation), and levels of TNF-α, IL-10, IL-1β, and NO were determined in the rat cerebral cortex after EMP exposure. In addition, to examine the signalling pathway of EMP-induced microglia activation, protein and phosphorylated protein levels of p38, JNK and ERK were determined. It was found that the expression of OX-42 increased significantly at 1, 6 and 12h (p<0.05) and recovered to the sham group level at 24h after EMP exposure. Levels of NO, TNF-α and IL-10 also changed significantly in vivo and in vitro after EMP exposure. The protein level of p38 and phosphorylated p38 increased significantly after EMP exposure (p<0.05) and recovered to sham levels at 12 and 24h, respectively. Protein and phosphorylated protein levels of ERK and JNK did not change. SB203580 (p38 inhibitor) partly prevented the change in NO, IL-10, IL-1β, TNF-α levels induced by EMP exposure. Taken together, these results suggested that EMP exposure (200kV/m, 200 pulses) could activate microglia in rat brain and affect its secretory function both in vivo and in vitro, and the p38 pathway is involved in this process.

The present study investigated the protective effects of lotus seedpod procyanidins (LSPCs) on extremely low frequency electromagnetic field (ELF-EMF)-induced neurotoxicity in primary cultured rat hippocampal neurons and the underlying molecular mechanism. The results of MTT, morphological observation, superoxide dismutase (SOD) and malondialdehyde (MDA) assays showed that compared with control, incubating neurons under ELF-EMF exposure significantly decreased cell viability and increased the number of apoptotic cells, whereas LSPCs evidently protected the hippocampal neurons against ELF-EMF-induced cell damage. Moreover, a certain concentration of LSPCs inhibited the elevation of intracellular reactive oxygen species (ROS) and Ca(2+) level, as well as prevented the disruption of mitochondrial membrane potential induced by ELF-EMF exposure. In addition, supplementation with LSPCs could alleviate DNA damage, block cell cycle arrest at S phase, and inhibit apoptosis and necrosis of hippocampal neurons under ELF-EMF exposure. Further study demonstrated that LSPCs up-regulated the activations of Bcl-2, Bcl-xl proteins and suppressed the expressions of Bad, Bax proteins caused by ELF-EMF exposure. In conclusion, these findings revealed that LSPCs protected against ELF-EMF-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptotic pathway.

Extremely low frequency (ELF) electromagnetic field (EMF) is thought to prolong the life of free radicals and can act as a promoter or co-promoter of cancer. 8-hydroxy-2'-deoxyguanosine (8OHdG) is one of the predominant forms of radical-induced lesions to DNA and is a potential tool to assess the cancer risk. We examined the effects of extremely low frequency electromagnetic field (ELF-EMF) (50 Hz, 0.97 mT) on 8OHdG levels in DNA and thiobarbituric acid reactive substances (TBARS) in plasma. To examine the possible time-dependent changes resulting from magnetic field, 8OHdG and TBARS were quantitated at 50 and 100 days. Our results showed that the exposure to ELF-EMF induced oxidative DNA damage and lipid peroxidation (LPO). The 8OHdG levels of exposed group (4.39+/-0.88 and 5.29+/ -1.16 8OHdG/dG.10(5), respectively) were significantly higher than sham group at 50 and 100 days (3.02+/-0.63 and 3.46+/-0.38 8OHdG/dG.10(5)) (p<0.001, p<0.001). The higher TBARS levels were also detected in the exposure group both on 50 and 100 days (p<0.001, p<0.001). In addition, the extent of DNA damage and LPO would depend on the exposure time (p<0.05 and p<0.05). Our data may have important implications for the long-term exposure to ELF-EMF which may cause oxidative DNA damage.

PURPOSE: To detect the genotoxic effects of extremely low frequency (ELF) -magnetic fields (MF) on oxidative DNA base modifications [8-hydroxyguanine (8-OH-Gua), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde)] in rat leucocytes, measured following exposure to ELF-MF. MATERIALS AND METHODS: After exposure to ELF-MF (50 Hz, 100 and 500 microT, for 2 hours/day during 10 months), DNA was extracted, and measurement of DNA lesions was achieved by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). RESULTS: Levels of FapyAde, FapyGua and 8OHdG in DNA were increased by both 100 microT and 500 microT ELF-MF as compared to a cage-control and a sham group; however, statistical significance was observed only in the group exposed to 100 microT. CONCLUSION: This is the first study to report that ELF-MF exposure generates oxidatively induced DNA base modifications which are mutagenic in mammalian cells, such as FapyGua, FapyAde and 8-OH-Gua, in vivo. This may explain previous studies showing DNA damage and genomic instability. These findings support the hypothesis that chronic exposure to 50-Hz MF may be potentially genotoxic. However, the intensity of ELF-MF has an important influence on the extent of DNA damage.

Abstract Purpose: Genotoxic effects have been considered the gold standard to determine if an environmental factor is a carcinogen, but the currently available data for extremely low frequency time-varying magnetic fields (ELF-MFs) remain controversial. As an environmental stimulus, the effect of ELF-MF on cellular DNA may be subtle. Therefore, a more sensitive method and systematic research strategy are warranted to evaluate genotoxicity. Materials and methods: We investigated the effect of ELF-MFs in combination with ionizing radiation (IR) or H$_2$O$_2$ on the DNA damage response of expression of phosphorylated H2AX (γ-H2AX) and production of γ-H2AX foci in non-tumorigenic human cell systems consisting of human lung fibroblast WI38 cells and human lung epithelial L132 cells. Results: Exposure to a 60-Hz, 2 mT ELF-MFs for 6 h produced increased γ-H2AX expression, as well as γ-H2AX foci production, a common DNA double-strand break (DSB) marker. However, exposure to a 1 mT ELF-MFs did not have the same effect. Moreover, 2 mT ELF-MFs exposure potentiated the expression of γ-H2AX and γ-H2AX foci production when combined with IR, but not when combined with H$_2$O$_2$. Conclusions: ELF-MFs could affect the DNA damage response and, in combination with different stimuli, provide different effects on γ-H2AX.

Oxidative stress is implicated in the intracellular signal transduction pathways for nitric oxide synthase (NOS) induction. The electromagnetic field (EMF) is believed to increase the free radical lifespan [S. Roy, Y. Noda, V. Eckert, M.G. Traber, A. Mori, R. Liburdy, L. Packer, The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field, FEBS Lett. 376 (1995) 164-6; F.S. Prato, M. Kavaliers, J.J. Carson, Behavioural evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents, Bioelectromagnetics 17 (1996) 123-30; A.L. Hulbert, J. Metcalfe, R. Hesketh, Biological response to electromagnetic fields, FASEB J 12 (1998) 395-420]. We tested the effects of EMF on endotoxin induced nitric oxide (NO) generation in vivo. Male BALB/C mice were injected with lipopolysaccharide (LPS) intraperitoneously (i.p.), followed by the exposure to EMF (0.1 mT, 60 Hz). Five hours and 30 min after the LPS administration, mice were administered with a NO spin trap, ferrous N-methyl-D-glucaminedithiocarbamate (MGD-Fe). Thirty minutes later, mice were sacrificed, and their livers were removed. The results were compared to three control groups: group A (LPS (-) EMF(-)); group B (LPS(-) EMF(+)); group C (LPS(+) EMF(-)). The ESR spectra of obtained livers were examined at room temperature. Three-line spectra of NO adducts were observed in the livers of all groups. In groups A and B very weak signals were observed, but in groups C and D strong spectra were observed. The signal intensity of the NO adducts in Group D
was also significantly stronger than that in Group C. EMF itself did not induce NO generation, however, it enhanced LPS induced NO generation in vivo.

Magnetic field (MF) is being used in antitumor treatment; however, the underlying biological mechanisms remain unclear. In this study, the potency and mechanism of a previously published tumor suppressing MF exposure protocol were further investigated. This protocol, characterized as a 50 Hz electromagnetic field modulated by static MF with time-average intensity of 5.1 mT, when applied for 2 h daily for over 3 consecutive days, selectively inhibited the growth of a broad spectrum of tumor cell lines including lung cancer, gastric cancer, pancreatic cancer and nephroblastoma. The level of intracellular reactive oxygen species (ROS) increased shortly after field exposure and persisted. Subsequently, pronounced DNA damage and activation of DNA repair pathways were identified both in vitro and in vivo. Furthermore, use of free radical scavenger alleviated DNA damage and partially reduced cell death. Finally, this field was found to inhibit cell proliferation, and simultaneously induced two types of programmed cell death, apoptosis and ferroptosis. In conclusion, this tumor suppressing MF could determine cell fate through ROS-induced DNA damage, inducing oxidative stress and activation of the DNA damage repair pathways, eventually lead to apoptosis and ferroptosis, as well as inhibition of tumor growth.

Male Sprague Dawley rats were exposed to EMP irradiation of 100 kV/m peak-to-peak e-field intensity and different numbers of pulses. Rat sperm samples were prepared for analysis of sperm qualities; Testes were assessed by transmission electron microscopy and serum hormone concentrations were examined by radioimmunoassay; Enzymatic activities of Total-superoxide dismutase(T-SOD) and manganese-superoxide dismutase (MnSOD), the mRNA levels of MnSOD and cuprozinc-superoxide dismutase (CuZnSOD), and the density of malondialdehyde (MDA) were also determined. EMP irradiation did not affect spermatozoon morphology, micronucleus formation rate, sperm number or viability, but the acrosin reaction rate decreased at 24 h and 48 h and recovered by 72 h after irradiation as compared to the controls. The ultrastructure of rat testis displayed more serious damage at 24 h than at other time points (6 h, 12 h, 48 h). Serum levels of luteotrophic hormone (LH) and testosterone (T) were elevated in irradiated rats as compared to
After irradiation, enzymatic activities of T-SOD and MnSOD were reduced by 24 h, consistent with the changes observed in MnSOD mRNA expression; MDA content increased at 6 h in turn. These studies have quantified the morphological damage and dysfunction in the rat reproductive system induced by EMP. The mechanism of EMP induced damage may be associated with the inhibition of MnSOD expression.

The prevalence of domestic and industrial electrical appliances has raised concerns about the health risk of extremely low-frequency magnetic fields (ELF-MFs). At present, the effects of ELF-MFs on the central nervous system are still highly controversial, and few studies have investigated its effects on cultured neurons. Here, we evaluated the biological effects of different patterns of ELF-MF exposure on primary cultured hippocampal neurons in terms of viability, apoptosis, genomic instability, and oxidative stress. The results showed that repeated exposure to 50-Hz 2-mT ELF-MF for 8 h per day after different times in culture decreased the viability and increased the production of intracellular reactive oxidative species in hippocampal neurons. The mechanism was potentially related to the up-regulation of Nox2 expression. Moreover, none of the repeated exposure patterns had significant effects on DNA damage, apoptosis, or autophagy, which suggested that ELF-MF exposure has no severe biological consequences in cultured hippocampal neurons.

High-voltage electricity lines are known to generate extremely low-frequency electromagnetic fields (ELF-EMFs). With the process of urbanization, increasing concerns has been focused on the potentially hazardous impacts of ELF-EMF on human health, and the conclusions are controversial. Little is known about the method of prevention against ELF-EMF induced healthy problems. A total of 186 male workers with occupational exposure to high-voltage electricity lines, and 154 male subjects with insignificant exposure as reference control were enrolled in this study. Resveratrol or placebo was given as dietary supplements (500 mg twice daily), and several inflammatory biomarkers and biomarkers of oxidative stress were assessed. Workers who had long-term exposure to high-voltage electricity lines exhibited elevated urinary levels of 8-hydroxy-2-deoxy-guanosine (8-OHdG) and F2-isoprostane, compared to the reference group. Lower plasma nuclear factor kappa B (NF-κB) and interleukin (IL)-6 were observed in exposed workers compared to the reference group. Resveratrol significantly reversed the adverse impacts of ELF-EMF. Stimulated cytokine
production by resveratrol was found in exposed workers but not in the reference group. This study supported that occupational and long-term exposure to high-voltage electricity lines has an adverse effect on homeostasis of human body, and resveratrol supplement could be an effective protection strategy against the adverse effects induced by ELF-EMFs.

All the living beings live and evolve under geomagnetic field (25-65 μT). Besides, opportunities for human exposed to different intensities of static magnetic fields (SMF) in the workplace have increased progressively, such SMF range from weak magnetic field (<1 mT), moderate SMF (1 mT-1 T) to high SMF (>1 T). Given this, numerous scientific studies focus on the health effects and have demonstrated that certain magnetic fields have positive influence on our skeleton systems. Therefore, SMF is considered as a potential physical therapy to improve bone healing and keep bones healthy nowadays. Here, we review the mechanisms of effects of SMF on bone tissue, ranging from physical interactions, animal studies to cellular studies.

Nitric oxide (NO) is involved in osteoclast differentiation. Our previous studies showed that static magnetic fields (SMFs) could affect osteoclast differentiation. The inhibitory effects of 16 T of high SMF (HiMF) on osteoclast differentiation was correlated with increased production of NO. We raised the hypothesis that NO mediated the regulatory role of SMFs on osteoclast formation. In this study, 500 nT of hypomagnetic field (HyMF), 0.2 T of moderate SMF (MMF) and 16 T of high SMF (HiMF) were utilized as SMF treatment. Under 16 T, osteoclast formation was markedly decreased with enhanced NO synthase (NOS) activity, thus producing a high level of NO. When treated with NOS inhibitor N-Nitro-L-Arginine Methyl Ester (L-NAME), NO production could be inhibited, and osteoclast formation was restored to control group level in a concentration-dependent manner. However, 500 nT and 0.2 T increased osteoclast formation with decreased NOS activity and NO production. When treated with NOS substrate L-Arginine (L-Arg) or NO donor sodium nitroprusside (SNP), the NO level in the culture medium was obviously elevated, thus inhibiting osteoclast differentiation in a concentration-dependent manner under 500 nT or 0.2 T. Therefore, these findings indicate that NO mediates the regulatory role of SMF on osteoclast formation.

Although it has been several decades since the focus on the effect of extremely low frequency electromagnetic fields (ELF-EMF) of high-voltage power lines on human health, no consistent conclusion has been drawn. The present study aimed to investigate the change in oxidative stress after exposure to ELF-EMFs, and potential protective effects of green tea polyphenol supplementation (GTPS) on ELF-EMFs induced oxidative stress. A total of 867 subjects, including workers with or without exposure to ELF-EMFs of 110-420kV power lines, participated and were randomized into GTPS and placebo treatment groups. Oxidative stress and oxidative damage to DNA were assessed by urinary tests of 8-isoprostane and 8-OHdG. Significant increased urinary 8-isoprostane and 8-OHdG were observed in workers with ELF-EMFs exposure, which were diminished after 12 months of GTPS. No protective effects of GTPS on oxidative stress and oxidative damage to DNA were observed after three months of GTPS withdraw. We found a negative impact of high-voltage power lines on the health of workers. Long-term GTPS could be an efficient protection against the health issues induced by high-voltage power lines.

The literature on the impact of strong static magnetic fields (SMF) on human health is vast and contradictory. The present study focused on the cellular effects of strong homogeneous SMF in human-hamster hybrid (A(L)) cells, mitochondria-deficient (p(0) A(L)) cells, and double-strand break (DSB) repair-deficient (XRS-5) cells. Adenosine triphosphate (ATP) content was significantly decreased in A(L) cells exposed to 8.5 Tesla (T) but not 1 or 4 T SMF for either 3 or 5 h. In addition, ATP content significantly decreased in the two deficient cell lines exposed to 8.5 T SMF for 3 h. With further incubation of 12 or 24 h without SMF exposure, ATP content could retrieve to the control level in the A(L) cells but not p(0) A(L) and XRS-5 cells. Under a fluorescence reader, the levels of reactive oxygen species (ROS) in the three cell lines were significantly increased by exposure to 8.5 T SMF for 3 h. Concurrent treatment with ROS inhibitor, DMSO, dramatically suppressed the ATP content in exposed A(L) cells. However, the CD59 mutation frequency and the cell cycle distribution were not significantly affected by exposure to 8.5 T SMF for 3 h. Our results indicated that the cellular ATP content was reduced by 8.5 T SMF for 3 h exposure, which was partially mediated by mitochondria and the DNA DSB repair process. Moreover, ROS were involved in the process of the cellular perturbations from the SMF.
Effects of melatonin, extremely-low-frequency magnetic field (ELF-MF), and their combination on AT478 murine squamous cell carcinoma line were studied. Manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (Cu/ZnSOD), and glutathione peroxidase (GSH-Px) were used as markers of cells antioxidative status, and malondialdehyde (MDA) level was used as a marker of lipid peroxidation. After melatonin treatment, antioxidative enzyme activities were increased and MDA level was decreased. Application of ELF-MF on treated cells caused an increase of both superoxide dismutases activity and MDA level, but influence of ELF-MF on GSH-Px activity was negligible. All enzyme activity in culture medium containing melatonin (10\(^{-3}\), 10\(^{-4}\), 10\(^{-5}\) M) after exposure to ELF-MF were significantly diminished compared to cells treated only with melatonin. Also MDA levels after combined treatment with melatonin and ELF-MF were significantly decreased. Observed changes were statistically significant (p<0.05). These results strongly suggest that ELF-MF attenuates antioxidative actions of melatonin on cellular level.

The aim of the work was verification of the hypothesis that weak power frequency (50 Hz) magnetic fields (MF) affected the number of free oxygen radicals in living biological cells and that these changes could be qualitatively explained by the radical pair mechanism. The experiments were performed on rat lymphocytes. One-hour exposure to 50 Hz MF at 20, 40, or 200 microT flux densities was performed inside a pair of Helmholtz coils with axis along or crosswise to the Earth's static MF. Iron ions (FeCl2) were used as a stimulator of the oxidation processes. Oxygen radicals were measured by fluorimetry using a DCF-DA fluorescent probe. Only in the lymphocytes exposed at 40 microT MF directed along the Earth's static MF there was a decrease of fluorescence in relation to non-exposed samples. Our observation seems to confirm the hypothesis that low level power frequency MF affects oxidative processes which occur in living biological cells and that this effect can be explained by the radical pair mechanism.

The mechanisms of biological effects of 50/60 Hz (power frequency) magnetic fields (MF) are still poorly understood. There are a number of studies indicating that MF affect biochemical processes in which free radicals are involved, such as the biological objects' response to ultraviolet radiation (UVA). Therefore, the present study was aimed to assess the effect of 50 Hz MFs on the oxidative
deterioration of DNA in rat lymphocytes irradiated in vitro by UVA. UVA radiation (150 J/m²) was applied for 5 min for all groups and 50 Hz MF (40 microT rms) exposure was applied for some of the groups for 5 or 60 min. The level of DNA damage was assessed using the alkaline comet assay, the fluorescence microscope, and image analysis. It has been found that the 1 h exposure to MF caused an evident increase in all parameters consistent with damaged DNA. This suggests that MF affects the radical pairs generated during the oxidative or enzymatic processes of DNA repair.

Appendix A: a brief description of cellular oxidative processes

Activity in the mitochondrial electron transport chain leads to the production of superoxide (O$_2^-$) which can be converted to hydrogen peroxide (H$_2$O$_2$) by the enzyme superoxide dismutate (SOD). H$_2$O$_2$ can be further converted by the iron-dependent Fenton reaction into the potent hydroxyl radical (OH'). In the cytoplasm, nitric oxide (NO') is generated by various forms of nitric oxide synthase (NOS) by conversion of L-arginine to L-citrulline. NO' reacts with O$_2^-$ to generate the potent oxidant peroxynitrite (ONOO'). O$_2^-$ can also be produced by NOS by transfer of electron from NADPH to O$_2$. Other enzymatic processes, such as cytochrome P$_{450}$, also generate ROS in normal cellular activities.

Major anti-oxidative processes in cells include catalase/peroxidase that converts O$_2^-$ to H$_2$O and O$_2$. In the process, glutathione (GSH) is oxidized to glutathione disulfide (GSSG). GSSG is reduced back to GSH by the enzyme glutathione reductase with the conversion of NADPH to NADP. GSH and NADPH are the most common electron donors participated in cellular anti-oxidation processes. ONOO' is decomposed by peroxiredoxin and glutathione peroxidase into less potent nitrogen free radicals (NO$_3^-$/NO$_2^-$).

ROS react with cellular macromolecules. The most common form of DNA oxidative damage is the formation of hydroxylated bases. 8-hydroxy-2'-deoxyguanosine (8-OHdG) is generally used an index of oxidative DNA damage. ROS react with lipids to produce lipid peroxyl radicals and lipid hydroperoxides. Lipid peroxyl can subsequently form malondialdehyde (MDA), which is commonly used as an index of oxidative lipid damage. Lipid radicals can diffuse through membrane leading to protein oxidation and formation of DNA-MDA adduct. Oxidative lipid damages affect the structure and function of cell membrane. ROS attack proteins directly and indirectly. Protein carbonyl is a form of protein oxidative damage. Changes in protein structure lead to alteration in enzymatic activities, particularly, damage to membrane transport proteins leads to ionic imbalance such as intracellular concentrations of...
calcium and potassium. Oxidative stress could also cause changes in regulation of transcription factors in cells, e.g., the Nrf2 antioxidant pathway.